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ABSTRACT 
This dissertation will present a progression from the detection of double-

stranded DNA using a combination of toehold-mediated strand displacement and 

DNAzyme reactions in dilute saline solutions, to the generation of separate 

compartments to allow standardization of DNA computing elements, by protecting 

from complementary strands. In well-mixed solutions complementary regions 
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cause spurious interactions. Importantly, these compartments also provide 

protection from nucleases. Along the way we will also explore the use of silica 

microsphere supported lipid bilayers to run compartmentalized DNA reactions on 

a fluid surface and the design of a molecule capable of DNA-based 

transmembrane signal transduction.  
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CHAPTER 1 - INTRODUCTION 
 
1.1 A Need for Improved Arbovirus Diagnostics 

 We live in a rapidly changing world, full of impressive technological 

advances. From airplanes and diesel-powered freighters, which move people and 

cargo across the globe at astounding rates, to computers, which control our 

medical devices, automobiles and satellites, the world of today is vastly different 

than the world of 1918. The advances made over the last 100 years have greatly 

enriched the standard of living for citizens of the developed world, and to some 

extent for all of humanity. However, this enrichment is balanced by considerable 

threats to life, as we know it. With globalization, increased trade and travel, comes 

the spread of disease. In addition, human activities over the last century have 

significantly increased greenhouse gases, while simultaneously depleting oxygen-

producing vegetation. According to the Intergovernmental Panel on Climate 

Change, corroborated by scientific communities across the globe and zealously 

denied by a select minority, the global average temperature is predicted to 

increase steadily over the next century.1,2 

Consequently, infectious tropical diseases, such as the arbovirus Dengue 

virus (DENV), are an emerging threat to developed nations found in temperate 

zones. The number of DENV cases has increased by 30-fold over the last 50 

years,3 and as of 2013 there were an estimated 390 million DENV infections 

annually;4 endangering 40% of the world’s population according to the World 

Health Organization and making DENV the most frequent arboviral infection. 

DENV has two mosquito vectors, Aedes aegypti and Ae. albopictus, which in the 
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past were endemic to warm and moist tropical and subtropical regions. However, 

increased temperatures, coupled with changing weather patterns, have expanded, 

and are projected to continue expanding, the range of these vectors.5,6 The 

predicted range of Ae. aegypti and Ae. albopictus was recently determined using 

a probabilistic species distribution model, which incorporated both climatic and 

anthropogenic factors (Figure 1.1). To mitigate this threat detection platforms are 

needed. Rapid, accurate and low-cost diagnostics are required for effective 

treatment and to decrease the spread of DENV and similar arboviruses. 

A) 

 
B) 

  
Figure 1.1 - Predicted Range of Ae. Aegypti and Ae. Albopictus. Global map of the 
predicted distribution of Ae. aegypti A) and Ae. albopictus B). The map depicts the probability 
of occurrence (from 0 blue to 1 red) at a spatial resolution of 5 km x 5 km. Reprinted as public 
domain.5  
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 Accurately diagnosing and serotyping DENV infections is critical because a 

patient infected by multiple serotypes is at elevated risk for dengue hemorrhagic 

fever and dengue shock syndrome, which increases the risk of fatality.7 However, 

there are four DENV serotypes (DENV-1, DENV-2, DENV-3 and DENV-4), which 

are genetically and for the most part antigenically distinct.8 There are also different 

genotypes within each serotype and DENV has a high mutation rate; due to large 

populations, achieved through rapid reproduction, that is often accompanied by 

inaccurate genome replication.8 This makes DENV, and pathogens with similar 

genetic make-ups, difficult to diagnose and serotype.  

Currently, antigenic methods do not precisely distinguish between 

serotypes, which determine disease progression, response to vaccines, the size 

of the epidemic and continued viral evolution.9 Also, as the DENV genome evolves 

diagnostic methods must be updated. A solution to this problem is to design 

modularized bioassay platforms that target nucleic acid signatures and are capable 

of rapid modification.10,11 The current gold standard for the detection of nucleic acid 

signatures is polymerase chain reaction (PCR), which amplifies specific nucleic 

acid signatures well above background levels and as a result can detect pathogens 

that are present at concentrations as low as 100 copies/mL.12.  In biosensing 

applications13,14 it is often necessary to detect pathogens at this concentration. 

However, PCR requires thermal cycling, proteins and highly trained technicians, 

as such new isothermal biosensing technologies would prove beneficial; especially 

in resource-poor areas. Molecular scale computers, built using biopolymers (i.e. 

nucleic acids), are capable of isothermal biosensing and allow more complex 
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decision making than PCR.  These systems are also able to target multiple 

pathogenic signatures, integrated into a single diagnostic decision. Targeting 

multiple nucleic acid signatures will increase specificity and improve differential 

diagnosis in the early stages of disease states with complex genomic overlaps 

and/or disease states that exhibit similar symptoms.15 

1.2 Molecular Scale Computers as a Solution  
Molecular scale computers can potentially improve the specificity, and 

decrease the time and cost associated with the diagnosis and serotyping of 

diseases, such as DENV. DNA, due to its highly predictable thermodynamic and 

mechanical properties, is an ideal building material for molecular scale computers. 

DNA is also programmable and inherently biocompatible. Thus, DNA-based 

molecular computation has great potential as a diagnostic tool.  

Nadrian Seeman recognized nucleic acids as programmable molecules in 

the early 1980s16, and published more than 60 journal articles over the next 

decade. By the late 1990s Seeman was demonstrating the self-assembly of two-

dimensional DNA crystals.17 In 1994, inspired by Richard Feynman’s 1959 

Miniaturization talk on submicroscopic computer, Leonard Adleman computed a 

Hamiltonian path using DNA.18 These advancements meant that by the turn of the 

millennium DNA nanotechnologists were able to direct the assembly of nanoscale 

molecular structures, and to compute complex mathematical algorithms using the 

predictability of DNA complementarity. 

Building on Seeman and Adelman’s discoveries, enzyme-based 

computational systems were developed. These systems relied on catalytic DNA 
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Figure 1.2 – DNAzyme Based Molecular Computation. (a) AND gate (A∧B) is constructed 
through attachment of two loops complementary to input oligonucleotides to the 5‘- and 3‘-ends 
of the deoxyribozyme; deoxyribozyme is active only if both inputs are present; insert 
schematically presents inactive gate (output 0) with closed one (magenta and blue) or both 
loops (brown) and active gate with both loops open (output 1, green). (b) Fluorescence spectra 
(relative intensity vs emission wavelength, λexc = 480 nm, t = 4 h) of the solution 
containing A∧B, S, and (from top to bottom):  IA and IB (output 1, green line), only IB, only IA, or 
no input oligonucleotides. (Insert) Truth table for AND gate. Reprinted with permission from 
Stojanovic et al.19 Copyright 2002 American Chemical Society. 
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strands (DNAzymes), which are single stranded DNA oligonucleotides that 

catalyze a variety of chemical reactions in the presence of divalent metal ions.20,21 

For DNA-based molecular computation, DNAzymes catalyze the cleavage of a 

partially complementary chimeric DNA substrate molecule at a single RNA 

base.10,22-26 The initial DNAzyme logic gates relied on a conformational change 

that selectively produced an output when the correct combination of inputs were 

present. An example of an AND gate is shown in Figure 1.2, where the DNAzyme 

is only activated when input A and input B are both present, at which point the 

DNAzyme is able to bind the chimeric substrate molecule and cleave it.  This 

process results in an increase in fluorescence only when the correct combination 

of inputs is present. Every logic gate has a corresponding truth table, which is 

referenced to a fluorescent readout that must be above a set threshold to be 

counted as true (Figure 1.2b). Based on predicted secondary structures, the 

authors were able to implement a functionally complete set of Boolean logic gates. 

Boolean logic is a branch of algebra where the values of variables are reduced to 

true or false, which can be further simplified to 1 or 0. Digital electronic computers 

use Boolean logic to make decisions. Using this set up, biosensors were designed 

to sense multiple disease markers, which could potentially deliver drug cargos 

based on the Boolean output.19 The complexity of these systems was rapidly 

increased, with the demonstration of a molecular tic-tac-toe opponent,23  followed 

by half adder27 and full adder systems.28 DNAzymes were also used to develop 

molecular walkers, or spiders, which could autonomously navigate a path.29 These 

technologies contributed predictable mechanical control, via pre-determined 
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secondary structures, to the DNA-based molecular computing toolbox. These 

technologies also increased the computational complexity of DNA based 

molecular computing systems. 

Computational strand displacement systems were developed around the 

same time as the first DNAzyme papers, and also built on Seeman and Adelman’s 

works. The initial enzyme-free systems represented nanoscale machines, 

constructed of and fueled by DNA.30,31 These systems were followed by 

molecular circuits,32  the kinetics of which could be controlled by the length of a 

toehold.33 A toehold serves as a nucleation site for the binding of an input strand 

to a logic gate complex that comprises an incumbent strand, which is fully 

complementary to a longer strand called the template strand (Figure 1.3). The 

toehold is a single stranded DNA (ssDNA) overhang of the template strand that 

extends beyond the incumbent strand. Once the ssDNA input strand binds to the 

toehold, breathing of the double stranded DNA (dsDNA) causes a branch 

migration process to take place, as the base pairs of the gate spontaneously 

open and hence the input strand is able to gradually displace the incumbent 

strand of the gate. Once the input strand fully hybridizes to the template, the 

incumbent strand is released. Formation of the resulting input/template complex 

 
 
Figure 1.3 - Toehold-Mediated Strand Displacement (TMSD). An input strand binds to the toehold 
region of a logic gate complex, which is comprised of a shorted incumbent strand and a longer 
template strand. After binding the input begins to displace the incumbent strand via branch 
migration. Ultimately, the incumbent is fully displaced resulting is a more thermodynamically stable 
input/template complex. 
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is thermodynamically favored owing to the net increase in the number of base 

pairs. These early toehold-mediated strand displacement (TMSD) systems 

brought thermodynamic and kinetic control to DNA-based molecular computing 

systems.  

In 2006, Paul Rothemund introduced DNA origami,34 whereby staple 

strands bind to a template strand to form precise structures. The sophistication of 

DNA origami was recognized almost immediately, has been incorporated into 

almost four thousand publications, ranging from the construction of complex three-

dimensional nanoscale structures35 to the placement of molecules with localization 

of molecules with Bohr radius resolution36. The most remarkable contribution of 

DNA origami is not the visually impressive two and three-dimensional nanoscale 

structures, but instead the ability to self-assemble molecular systems with precise 

control over molecular orientations and locations. This is possible because of 

DNA’s incredibly precise structure, with highly predictable length and hybridization 

properties.37 With the help of well-established software packages, such as 

cadnano, which generate reliable sequences, scientists are able to design desired 

structures, such as DNA origami tiles, and incorporate appropriate addressing 

systems by including extensions in the staple strand sequences.  Eleven years 

after Rothemund introduced DNA origami, structures on the microscale were 

achieved.38 Now DNA nanotechnologists are able to direct the assembly of 

microscale DNA-based structures, and send molecules to specific addresses on 

these structures. 
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In addition to being excellent tools for developing diagnostics, DNA-based 

molecular computing systems have been: carried out in vivo,39-41 used to mimic 

protein structures,42 and used to model biological processes.43,44 Once a number 

of limitations have been addressed, DNA-based molecular computation could be 

used in the development of theranostics, reduce costs associated with clinical 

trials, and elucidate elements of biomolecular circuitry that are still not well 

understood. 

1.3 Limitations Associated with Solution Phase DNA-Based Molecular 
Computing Systems 
 As remarkable as DNA nanotechnology systems are, with their predictable 

thermodynamic and mechanical properties that allow for complex computation and 

precise molecular orientation and localization, they are difficult to scale up. To date 

the largest circuit, reported in 2011, was a four-bit square-root circuit, requiring 130 

strands.45 In addition, the most logical and valuable applications require these 

systems to operate at high levels in biological samples or in vivo. There are three 

major limitations to scaling up DNA computation circuits – spurious interactions, 

signal attenuation as circuit size increases, and methods of analysis. These factors 

along with exposure to nucleases, a requirement for ssDNA inputs and significantly 

increased sequence complexity in biological systems significantly limit 

computational operation. 

In solution phase reactions systems all components must be non-interfering 

to prevent spurious interactions, which can overwhelm output signals resulting in 

decreased signal to noise ratios. Spurious interactions often referred to as leakage, 

occur when output signals are generated in the absence of activating input signals. 



www.manaraa.com

 10 

One of the first efforts to decrease leakage was thresholding,32 which required a 

specific level of output for signal transduction.  Careful sequence design, such as 

the incorporation of mismatches to destabilize leakage prone regions, can 

significantly reduce leakage.10,46 Additionally, structural designs, which protect 

sequences vulnerable to leakage, have also been shown to reduce leakage.45,47 

Finally domain level motifs, which prevent leakage by increasing the number of 

spurious events required for leakage to occur, have been demonstrated.48 Again, 

many elegant designs that effectively reduce leakage have been demonstrated, 

but as circuits are layered into more complex cascades or introduced to large 

biological sequence spaces, the background produced by leakage’s shadow 

overwhelms signals. 

The DNA-based molecular computing systems described thus far have 

been designed to target simple ssDNA oligonucleotides in solutions that are 

relatively simple, as compared to biological systems. However, when developing 

diagnostics that target pathogenic genomes, or implementing molecular circuits in 

vivo, synthetic systems must be designed to function in a highly complex sequence 

space. Twenty base genomic signatures are often sufficient to identify a specific 

pathogen (Figure 1.4A). However, pathogenic genomes often contain 104 – 106 

bases, and in the case of dsDNA genomes this number represent only half of the 

total number of bases present. For example, the DENV serotype 1 genome has 

10,735 bases (Dengue 1, from GenBank sequence accession number 

NC_001477.1), and this ssRNA viral genome is small compared to bacterial 

pathogens such as Escherichia coli with ~5.53x106 bases (1.11x107 total bases as 
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Figure 1.4 – LODs for PCR and DNA-Based Molecular Computation. A) The genomic 
material of pathogens is very complex, with tens of thousands of bases in a typical genome. 
There are signatures (sequences that are only found in specific species) and commonalities 
(sequences that are found across many species) throughout genomes. Nucleic acid-based 
diagnostics are frequently designed to target signatures of ~20 bases. B)  PCR is the gold 
standard among detection platforms, as the amplification process increases the 20-base target 
sequence to concentrations well above the genomic material. This process results in limits of 
detection (LODs) as low as 100 copies/mL. C) Most DNA-based molecular computation 
systems are designed to interface with single strand nucleic acids, and when targeting dsDNA 
genomes denaturation protocols are required. Once the genomic material has been denatured 
toeholds on molecular logic gates bind the genomic signature and the logic gate is activated. 
D) Activated logic gates then produce fluorescent signals that can be used to calculate LOD 
values, such as this hypothetical LOD plot. Current LODs for DNA-based molecular computation 
are at ~3x1012 copies/mL, making it far less sensitive than PCR. 
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this genome is dsDNA) (Escherichia coli O157:H7, from GenBank sequence 

accession number AE005174.2). Designs that are robust to non-specific 

interactions that may arise from regions of the genome that are not being 

specifically targeted are still needed.  

A wide variety of techniques have been employed to amplify signals for DNA 

computation, and still signal attenuation limits circuit size. Signal loss is a natural 

consequence of signal transduction and must be accounted for. In systems that 

lack amplification, each input signal activates only one logic gate and at low signal 

concentrations detection becomes infeasible. In 2004, hybridization chain reaction 

(HCR) was introduced as an initial means of isothermal amplification.49 In HCR 

systems input strands initiate a polymerization of DNA hairpin logic gates that 

would otherwise be kinetically trapped. However, once the reaction is initiated the 

hairpins continue to polymerize until they are fully consumed, making these 

systems difficult to incorporate into cascades. In strand displacement systems, 

signals are amplified via metastable fuel complexes32,50 or alternately with a 

reversible toehold exchange seesaw gate.45,51 In DNAzyme-driven molecular 

computation, input signals activate DNAzymes, each of which can cleave multiple 

substrate molecules, enabling signal amplification via enzymatic catalysis.24 Both 

biomolecular and silicon based circuits have methods for restoring attenuated 

signals, and although many elegant designs have been implemented signal 

attenuation continues to limit DNA-based molecular computing circuits. 

Amplification is also required to improve circuit performance at 

physiologically relevant concentrations. Again, PCR amplifies the target sequence 
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to concentrations far above genomic concentrations and this amplification process 

results in limit of detection (LODs) as low as 100 genome copies/mL (Figure 1.4B). 

However, with isothermal DNAzyme amplification, a limit of detection of ~25 

picomolar has been demonstrated for simple ssDNA molecules, and when the 

complexity of the sample increases the limit of detection goes up to ~5 nanomolar 

(3x1012 molecules/mL, Figures 1.4C and 1.4D).10 These systems must also 

incorporate methods for accessing dsDNA pathogenic genomes, as current 

techniques require single stranded nucleic acid inputs (Figure 1.4C).  

Current methods of analysis either provide strictly qualitative data or require 

fluorophores and as circuit size increases the number of fluorophores required 

becomes cost prohibitive. As such, new methods of analysis are required. 

Microscopy is an excellent way to visualize static and dynamic systems, but does 

not provide highly quantitative data, nor is it a high throughput method of analysis. 

Still, atomic force microscopy (AFM), or transmission electron microscopy (TEM), 

is used to characterize most origami structures,37,52 while fluorescent microscopy 

is used to track larger DNA based systems.42,44 A promising alternative is flow 

cytometry, which provides highly quantitative and high-throughput analysis.53 Flow 

cytometry analysis of fluorescently indexed beads would reduce the number of 

fluorophores required to track various components, while simultaneously 

improving data quality. 

Cells, and higher organisms have many protection mechanisms, including 

methods for degrading foreign and unused nucleic acids. As such, when synthetic 

nucleic acid systems are introduced in vivo they will be degraded unless protection 
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mechanisms are built into the delivery system. Therefore, engineered nucleic acids 

systems, must be stable in the presence of nucleases.41,54-58 Encapsulation of 

circuit components can potentially protect nucleic acids from degradation by 

nucleases.  

1.4 Spatially Organizing DNA-based Molecular Computing Systems to 
Address These Limitations 
 Spatial organization contributes significantly to the function of biological and 

silicon-based systems. From organelles to cells to tissues to tissue systems, the 

flow of information is intricately controlled by isolating, either on surfaces or within 

compartments, biomolecular circuits.59 At all levels, function relies on the spatial 

organization of biomolecular circuits that would otherwise interact in promiscuous 

ways.60 The same spatial organization is found within in silico circuit boards, and 

within almost every dynamical system engineered by man. In all cases, the 

robustness of the system is directly tied to a structure specifically tailored to 

achieve an objective.  

Previous studies explored reactants that were immobilized onto a solid 

surface, i.e. directly to microspheres61 or onto DNA origami scaffolds. 52,65-73 In 

such systems, reactants can only interact with strands that are directly adjacent to 

them and do not move beyond their anchor points, which has been utilized as a 

method for standardizing computing elements. In addition, the thermodynamic and 

kinetic properties of surface immobilized reactants is significantly altered by the 

molecular crowding that is a consequence of immobilizing reactions onto 

surfaces.62-65 Once the chemistry of these systems is fully understood restricting 

reactions to surfaces will increase effective concentrations, thereby speeding up 
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reactions at physiologically relevant concentrations. Surface based reactions will 

also decrease the need for orthogonality and will prevent spurious interactions that 

plague solution phase systems. 

Lipid bilayers can improve the efficiency of such systems, by providing 

fluidity. Moreover, with the addition of spectral addresses using fluorescent lipid 

markers, it also becomes possible to monitor specific reactions in a multi-reaction 

system individually,66 while simultaneously reducing the required number of 

fluorophores. Such multiplexed microsphere populations have simplified many 

pathogen detection assays by enabling the detection of many pathogenic 

signatures in a single solution assay that can be quantified by multi-parameter flow 

cytometry.67-71  

Naturally occurring biological membranes are primarily composed of 

phospholipids and proteins. Phospholipids self-assemble into diffusive structures 

and they are commercially available. There are a wide variety of proteins that 

naturally insert into biological membranes and are responsible for signaling into 

cells. However, protein based in vitro systems can be unstable and are expensive. 

A DNA based system that transduces signals across barriers, analogous to 

protein-based signal transduction, would prove beneficial. The interaction of DNA 

with lipid bilayers is a growing field of study, as DNA-lipid conjugates allow DNA 

nanotechnology to be applied in biologically relevant studies that mimic 

membrane-bound protein interactions.43,72-76 Additionally, lipid bilayers can be 

used to compartmentalize DNA-based molecular circuits, if systems are designed 

to interface with nucleic acid components.73,77 However, unlike proteins the 
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interaction between a DNA molecule and a lipid bilayer is not energetically 

favorable. The negatively charged phosphate backbone of DNA does interact 

electrostatically with cation lipid headgroups (Figure 1.6 A-C), which can be used 

to drive DNA-lipid interactions.  Other approaches include augmenting DNA with a 

wide range of commercially available modifications, some of which form covalent 

attachments with lipid head  groups (Figure 1.6 D-G). Antibodies and aptamer-

protein interactions (Figure 1.6 H and I) have been demonstrated at a means of 

restricting DNA-based structures to lipid bilayers surfaces. Finally, portions of the 

phosphate backbone can be rendered hydrophobic with ethyl-thiophosphate 

modifications, at which point DNA structures will spontaneously insert into the 

bilayer (Figure 1.6 J). All of these approaches result in relatively stable DNA-lipid 

interactions, but none of them provide a means of transmembrane communication, 

nor do they address the issue of non-specific interactions between DNA and lipids. 

The phospholipids used in many cases are zwitterionic, with an internal 

negatively charged phosphate group and an external positively charges amine. In 

physiological buffer conditions (i.e. phosphate buffered saline, with a Na+ 

concentration of 138 mM, and no divalent cations) the negative charge of DNA’s 

phosphate backbone is not attracted to the positively charged amine group. 

However, in the presence of divalent cations, which are required for DNAzyme 

function and included in many DNA reaction buffers, the phosphates of the lipid 

head group interact with the divalent cations and the positive charge on the 

external amine increases in strength.78,79 When setting up DNA reactions on 

surfaces, where the strands must be floating beyond the surface at predetermined 



www.manaraa.com

 17 

       
Figure 1.5 - DNA–Lipid Interactions. (A–C) Electrostatic binding to (A) cationic lipids, (B) 
zwitterionic lipids in the presence and (C) in the absence divalent cations. (D–G) Amphiphilic 
DNA conjugates with (D) PPO, (E) porphyrin, (F) lipid, (G) cholesterol. (H, I) Interactions 
involving membrane-associated proteins: (H) DNA–antibody conjugates and (I) aptamer–
protein interaction. (J) Hydrophobic ethyl-thiophosphate backbone modification. Reprinted with 
permission from Langecker et al.72 Copyright 2014 American Chemical Society. 
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concentrations, as opposed to non-specifically sticking to the lipid bilayer, this 

becomes a problem.  

 These non-specific interactions between DNA and lipids, in the presence of 

divalent cations, can be overcome by either adjusting the lipid composition or the 

buffer conditions. Silica microsphere supports greatly increase lipid bilayer 

stability, which conveniently also allows analysis with flow cytometry, but the 

positively charged amine at the surface of zwitterionic lipid headgroups is required 

for stability on the silica surface, a fact that significantly restricts lipid composition 

adjustments. As such, adjustments to the buffer conditions is the most effective 

means of reducing these non-specific interactions.  

1.5 Present Studies 
The most complex molecular systems on earth are the biomolecular circuits 

found in the human body. The highly complex functions of the human body are 

directly tied to its spatially organized structure. This dissertation presents a 

progression towards DNA-based systems that are spatially organized using lipid 

bilayers. The initial experiments were conducted in solution and demonstrated 

detection of dsDNA in the form of plasmids. Although the limit of detection for 

complex dsDNA samples was in the low nanomolar range, while simple ssDNA 

limits of detections were in the low picomolar range, when multiple regions of a 

plasmid were detected the response increased to levels comparable with the 

ssDNA samples. This suggests that the limit of detection for complex dsDNA 

samples could be reduced if multiple targets were identified and detected in a 

single tube assay. From here reactions were run on fluid bead surfaces, and a 

multiplexed Dengue diagnostic was demonstrated along with the development of 
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biological models. Potential applications for this technology include using 

multiplexed beads to target multiple genomic signatures for complex dsDNA 

samples, a full description of which is presented in Chapter 8. Next, with the hopes 

of achieving DNA-based signal transduction into and back out of synthetic 

compartments a membrane-spanning molecule was designed.  Finally, DNA 

aptamers were encapsulated within liposomes and small molecule inputs were 

shown to diffuse across lipid bilayers. Excitingly, these liposomes were also shown 

to protect DNA components from DNAses and from strands that would cause 

leakage in a well-mixed solution.  

Once again, we live in a rapidly changing world, which is both interesting 

and threatening. As the planet warms and globalization continues easily adaptable 

diagnostics will become more and more relevant. Smart diagnostics should be able 

to correctly identify specific pathogens in a complex sample, and they must do this 

rapidly. DNA-based molecular computation is an incredibly promising platform to 

achieve this critical objective, but effective spatial organization coupled with high 

throughput data analysis must be achieved.  
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CHAPTER 2 - GOALS AND OVERVIEW OF WORK 
  

Spatially organized molecular computing circuits, constructed using 

engineered biomolecules that self-assemble into highly organized structures and 

interface with biomolecular circuitry have the potential to improve our ability to 

diagnose and treat disease. This work investigates methods for improving the 

efficiency of current technologies by restricting components to surfaces and/or 

encapsulating them, enabling these systems to function at high levels as 

diagnostics, and as means of developing biological models.   

The work presented in Chapter 3 was published as a research article in the 

ChemPubSoc Europe journal ChemBioChem titled “A Unified Sensor Architecture 

for Isothermal Detection of Double-Stranded DNA, Oligonucleotides, and Small 

Molecules” (DOI - 10.1002/cbic.201402615). Here, we developed a unified DNA-

based biosensor architecture capable of detecting simple ssDNA inputs, more 

complex dsDNA targets and small molecules. This work relies on TMSD platforms 

and aptamers for detection and uses DNAzymes to amplify input signals and a 

chimeric substrate molecule as a reported. My contribution to this paper included 

mismatch design and the development of a proof-of-concept for the detection of 

complex dsDNA systems. To achieve this, I expressed, isolated and denatured 

plasmid DNA, which was then detected by TMSD-DNAzyme biosensors. I then 

calculated a limit of detection for both the ssDNA and dsDNA targets. Importantly, 

when multiple regions of the plasmid were targeted in a single tube assay the 

response for complex dsDNA increased to levels comparable with the ssDNA, the 

implications of which will be discussed in Chapter 8. This work was published as 
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a Communication and therefore the chapter is formatted as it appears in the 

original publication: abstract, body (including: introduction, results, discussion and 

conclusions), experimental section, acknowledgements, and references. 

Supporting Information for the body of work is available in Appendix I. 

Chapter 4 presents a versatile microsphere supported lipid bilayer platform 

for running DNA-based molecular computing reactions on a fluid surface. This 

work was published as a research article in the American Chemical Society journal 

of Applied Materials and Interfaces titled “A Microsphere-Supported Lipid Bilayer 

Platform for DNA Reactions on a Fluid Surface” (DOI - 10.1021/acsami.7b11046). 

Both TMSD and DNAzyme reactions were run on supported lipid bilayer surfaces. 

A DENV diagnostic was demonstrated with the TMSD reactions, using a 

multiplexed bead set. For the DNAzyme reactions the buffer conditions had to be 

considerably optimized, to decrease non-specific interactions between DNA and 

zwitterionic lipid head groups in the presence of the divalent cations that are 

required for enzymatic function (discussed in greater detail in Chapter 5). By 

decreasing the amount of Zn2+ and the amount of Na+ ions in solution we were 

able to run loos-of-fluorescence reactions with the DNAzyme in solution and the 

chimeric substrate on the bead, as well as have both the DNAzyme and the 

substrate molecule restricted to the bead surface. This work was published as a 

full article and is presented here as follows: abstract, introduction, experimental, 

results and discussion, conclusions, acknowledgement and references. Chapters 

5-7 will be presented according to this format. Appendix II includes the Supporting 

Information for this article, along with data on further reducing limits of detections. 
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Appendix V presents an alternate method for integrating oligonucleotides into lipid 

bilayers, using a cholesterol tag. 

Chapter 5 presents unpublished work pertaining to decreasing non-specific 

interactions between DNA and lipid bilayers. This chapter will focus on the various 

attempts to decrease non-specific interactions, including: lipid selection, buffer 

optimization and estimating the ideal number of oligonucleotides/bead. I was the 

primary experimentalist for all of this work. 

Chapter 6 presents efforts to achieve nucleic acid-based transmembrane 

signal transduction via a dimerization event. To begin, I designed a molecule with 

dimensions to match biological membranes. The portion that spans the bilayer 

consists of an oligophenylenevinylene (OPV), with functional groups that are 

compatible with standard click chemistry reactions. After successful synthesis, by 

Dr. Milan Stojanovic and Dr. Stevan Pecic at Columbia University, we ran click 

chemistry in an attempt to functionalize the OPV with oligonucleotides. Currently, 

we are trouble shooting the click chemistry reactions. All future work on this project 

will be completed by Madalyn E. Fetrow in collaboration with Dr. Stojanovic’s group 

at Columbia University and the Molecular Computing group here at University of 

New Mexico. Appendix III presents Supporting Information for this article. 

Chapter 7 presents work that in preparation, as a full journal article titled 

“Physical Isolation and Protection of Molecular Computing Elements in Giant 

Vesicles.” I will be first author on this publication as I conducted or supervised all 

experiments. Prof. Nick J. Carroll provided much appreciated expertise on the 

microfluidic portion of this project and Prof. Matt R. Lakin assisted with sequence 
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design. Physical isolation of molecular computing elements has the potential to 

increase complexity, by allowing the reuse of standardized components, and to 

protect nucleic acid components. We report the encapsulation of steroid-

responsive DNA aptamers within giant unilamellar vesicles (GUVs) that are 

permeable to steroid inputs. Monodisperse GUVs were loaded with aptamers 

using a high-throughput microfluidic platform. The GUVs also prevent degradation 

of DNA components by nucleases, providing a mechanism for protecting nucleic 

acid components in vivo. Importantly, our compartments prevent crosstalk 

between complementary strands in separate GUVs, providing a method for 

creating a single tube assay with potentially cross-reacting strands. Thus, our 

system provides a mechanism for spatially organizing computing elements, which 

increases modularity by allowing standardized components to be reused. 

Appendix IV presents Supporting Information for this chapter. 

Finally, Chapter 8 will present a number of promising applications that 

utilize the technologies presented here. 
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3.1 Abstract 
Pathogen detection is an important problem in many areas of medicine and 

agriculture, which may involve genomic or transcriptomic signatures, or small 

molecule metabolites. We report a unified, DNA-based sensor architecture 

capable of isothermal detection of double-stranded DNA targets, single-stranded 

oligonucleotides, and small molecules. Each sensor contains independent target 

detection and reporter modules, enabling rapid design. We detected gene variants 

on plasmids via a straightforward isothermal denaturation protocol. The sensors 

were highly specific, even with a randomized DNA background. We achieved a 

limit of detection of ~15 pM for single-stranded targets and ~5 nM for targets on 

denatured plasmids. By incorporating a blocked aptamer sequence, we also 

detected small molecules using the same sensor architecture. This work provides 

a starting point for multiplexed detection of multi-strain pathogens, and disease 

states caused by genetic variants (e.g., sickle cell anemia). 

3.2 Introduction, Results, Discussion, Conclusions and Future 
Directions 

Recent advances in DNA nanotechnology have enabled the construction of 

nucleic acid devices that use the predictable nature of Watson-Crick hybridization 

to perform computations,[1] and to detect targets with high specificity[2]. These 

 
Figure 3.0 – Abstract Figure. 
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properties, together with inherent biocompatibility and rapidly decreasing synthesis 

costs, make DNA an attractive material for the development of low-cost 

bioassays[3]. These requirements call for a simple, flexible design, for which DNA 

is ideally suited. However, nearly all bacterial and viral pathogens have double-

stranded genomes, and the inaccessibility of gene targets in their natural, double-

stranded state makes direct, isothermal detection using hybridization-based 

biosensors challenging. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.1 - Unified Sensor Architecture and Activation Mechanism in the Presence of 
Various Target Types. Binding of nucleic acid targets (oligonucleotides or denatured dsDNA) to 
the detection module by toehold-mediated DNA strand displacement exposed the reporter module 
toehold. Small molecule targets bound to a structure-switching aptamer in the detection module, 
similarly exposing the reporter module toehold. In both cases, this allowed the fuel strand to bind 
and complete displacement of the DNAzyme strand from the complex. The free DNAzyme strand 
then folded into a catalytically active conformation and generated an amplified fluorescent output by 
cleaving multiple substrate molecules labeled with a FRET pair.  
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Here we present a unified architecture and protocol for modular DNA-based 

sensors capable of specific detection of single- and double-stranded genetic 

targets, as well as small molecules. Our sensors combine toehold-mediated strand 

displacement (TMSD) and DNAzyme-catalyzed substrate cleavage to enable 

amplified target detection[4]. TMSD[5] is a versatile and powerful DNA computing 

technique that has been used to implement digital logic circuits[1a, 6], neural 

networks[7], enzyme-free catalytic networks[8], hairpin assembly systems[9] and 

molecular walkers[10]. TMSD reactions can be thermodynamically biased towards 

activation based on the lengths of the toeholds that nucleate the binding 

reactions[11]; this makes them ideal for detecting targets at low concentrations. By 

combining TMSD with inherently catalytic DNA strands (known as DNAzymes or 

deoxyribozymes), we can achieve an amplified signal output via multiple-turnover 

substrate cleavage. We have previously reported logic gates[12] and multi-layer 

DNAzyme signaling cascades[13] using these mechanisms. 

Inspired by our previous work[12], in this paper we extend the hybrid TMSD-

DNAzyme logic gate approach to engineer a unified sensor architecture capable 

of detecting a range of target types through a multi-step binding pathway. Figure 

3.1 depicts our unified sensor architecture, which consists of a catalytically inactive 

DNAzyme-inhibitor complex comprising two independent modules, a detection 

module (DM) that is responsible for target detection and a reporter module (RM) 

that produces the output signal, as well as an auxiliary fuel strand. The mechanism 

of activation for various target types is also shown in Figure 3.1. When the correct 

target is present, it binds to the DM and causes unbinding of the DNAzyme strand 
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up to the beginning of the RM. DNA targets bind to the complementary DM toehold 

t1* and trigger branch migration across the x domain, whereas small molecule 

targets displace the x domain via aptamer binding, causing a conformational shift 

in the DM. Either of these reactions partially displace the DNAzyme strand and 

open up the RM toehold t2*, previously sequestered in a small, 5 or 8 nucleotide 

(nt) bulge between the two modules. The fuel strand then hybridizes to the free 

RM toehold t2* and displaces the remainder of the DNAzyme strand via the s1 and 

cc1 domains. The cc1 domain contains enough of the catalytic core of the 

DNAzyme to prevent the core from spontaneously attaining a catalytically active 

conformation when the DNAzyme is bound to the inhibitor. Once displaced, the 

free DNAzyme is able to fold into a catalytically active conformation as the entire 

catalytic core (cc) is now single-stranded. This allows it to cleave its 

complementary FRET-labeled substrate to produce a fluorescent signal. If 

substrate is present in excess, each DNAzyme is capable of catalyzing the 

cleavage of many substrate molecules in a multiple-turnover kinetic regime, 

providing the potential for isothermal signal amplification in the readout module. All 

 
 
 
 
 
 
 
 

 
Figure 3.2 - Locations of Genetic Elements and Targets on the Studied Plasmids. 
Black arrows represent the open reading frame for each GFP protein variant. Locations of 
target sequences are denoted by white bars. a) Emerald GFP (emGFP) plasmid. b) SNAP25 
GFP plasmid.  
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of our designs were based on the 8-17 DNAzyme motif[14] because of its compact 

size and high catalytic efficiency[15]. 

The separation of target detection and reporter modules in our unified 

sensor architecture allowed the sequences of the detection and reporter modules 

to be varied independently. In particular, we varied the target module while keeping 

the reporter module fixed, enabling detection of multiple targets with a single 

fluorescent readout. We used this approach for DNA detection by designing five 

sensors that target corresponding sequences from two plasmids that encode GFP-

fusion protein variants, a commercially available Emerald GFP plasmid (referred 

to as emGFP) and a Pinpoint Xa plasmid containing a SNAP25-GFP fusion protein 

(referred to as SNAP25) previously developed in our lab[16]. All five sensors used 

a common reporter module. The locations of the sensor targets on the plasmids 

are illustrated in Figure 3.2. We chose three targets common to both plasmids, 

including a conserved region of the GFP sequence (C1), the gene coding for 

antibiotic resistance (C2), and the origin of replication (C3). We also chose one 

target specific to the emGFP variant (named E) and one target specific to the 

SNAP25 GFP variant (named S), enabling discrimination between different GFP-

fusion proteins. Data from the initial characterization of the five sensors using 

synthetic, single-stranded oligonucleotides corresponding to the five detection 

targets is presented in Figure 3.3, including detection of individual targets using 

single sensors, multiplexed detection of targets using multiple sensors, and the 

demonstration of a single sensor limit of detection ~15 pM. Error bars indicate one 
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standard deviation from the mean. 

The performance of the C1-3 and E 

sensors was comparable, whereas 

the S sensor was slower to activate. 

This difference may be due to 

unwanted secondary structure 

formation or input sequestration in 

the S target strand. 

Our goal was to use the 

unified sensor architecture to detect 

gene targets on the emGFP and 

SNAP25 plasmids. Detection of 

double-stranded DNA (dsDNA) is 

particularly challenging because of 

its inherent stability. Because 

toehold-mediated strand 

displacement relies on the 

availability of single-stranded 

toeholds to initiate branch migration, additional treatment steps are necessary to 

expose the target toeholds. We addressed the challenge of double-stranded DNA 

detection using an isothermal chemical denaturation protocol based on pH cycling. 

Briefly, we used a strongly basic solution (1M NaOH) to increase the pH of the 

plasmid solution, which denatured the duplexes due to the disruption of the 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.3 - Detection of Single-Stranded DNA 
Target Oligonucleotides. a) Individual sensor 
performance in the absence of target (white), other 
sensor targets (black), and the correct sensor target 
(gray). b) Multiplex sensor performance with all five 
sensors present. c) Limit of detection decreased 
over 15 hours to ~15 pM. 
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hydrogen bonding of DNA base pairs. We then used a strong acid (1M HCl) to 

bring the solution back down to physiological pH, so that the strand displacement 

and DNAzyme reactions underlying our sensor architecture could proceed. The 

denaturation step was essential to expose the single-stranded target domains from 

double-stranded complexes; in all cases, the control in which the plasmid was not 

denatured produced no fluorescent response (Figure AI.1). Data illustrating the 

detection of targets on chemically denatured emGFP and SNAP25 plasmids using 

the five sensors individually are presented in Figures 3.4a and 3.4b, respectively. 

In each case, we observed a fluorescent response from a given sensor if and only 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
Figure 3.4 - Biosensor Detection of Denatured Plasmid Target Sequences. a) Results from 
emGFP plasmid detection using the five sensors individually. b) Results from SNAP25 plasmid 
detection using the five sensors individually. c) Results from emGFP and SNAP25 plasmid 
detection using all five sensors simultaneously in a combined assay. d) Investigating the limit of 
detection of the five sensors for emGFP plasmid detection. Lines (left axis) show the response of 
the five sensors with various concentrations of denatured emGFP plasmid, for an LOD (right axis) 
of ~5nM after 14-15 hours. Data without error bars indicate representative traces. 
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if the corresponding target was present on the plasmid in question. Additional 

experiments in the presence of a randomized herring sperm DNA background 

yielded similarly positive results (Figure AI.2), which showed that the sensors are 

highly sequence-specific.  

To boost the observed signal intensity from positive target detection assays, 

we used all five sensors in a single assay with the emGFP or SNAP25 plasmids. 

The effective concentration of accessible binding sites on the plasmids may be a 

kinetically limiting factor, but additional sensors for different areas of the plasmid 

can increase the effective concentration of binding sites without increasing the 

plasmid concentration itself. The multiplexed sensor responses in the presence of 

emGFP and SNAP25 plasmids are presented in Figure 3.4c. Using multiple 

sensors simultaneously provides a significant kinetic advantage, seen in Figure 

3.5. The use of all five sensors provides a significant increase in response 

compared with a single sensor, 

and it is notable that the use of 

five sensors to detect plasmid 

generates a signal comparable to 

that of a single-stranded target. 

Thus, the multiplexed sensor 

approach works well for the 

detection of low analyte 

concentrations. 

 
 
 
 
 
 
 
 
 

 
Figure 3.5 - Comparison of Responses. For the E 
sensor and the combination of all five (C1-3,E,S) 
sensors, for oligonucleotide targets (solid lines) and 
emGFP plasmid targets (broken lines). We observed 
that the plasmid and oligonucleotide targets generated 
a similar response in the presence of all five sensors 
after 15 hours. 
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Detection of low input concentrations is vital in many pathogen detection 

applications. We investigated the limit of detection (LOD) for the combination of 

sensors in a plasmid detection assay. The left-hand axis of Figure 3.4d shows 

kinetic traces of all five sensor outputs in the presence of decreasing 

concentrations of the emGFP plasmid. Lowering the sensor concentrations 

reduced non-specific signal generation in the absence of input while slowing down 

the reactions. We determined the optimal LOD to be ~5 nM after 15 hours when 

all five sensors were used. A single sensor showed no response at these 

concentrations, demonstrating the benefit of the multiple sensor approach. 

While the detection of genetic targets is critical for pathogen identification 

and typing, small molecule sensors also have important applications, e.g., in drug 

or metabolite detection[17]. DNA aptamers can bind to small molecules, resulting in 

a conformational change[18]. We used 

this capability to replace the detection 

module of our sensor design with a 

partially blocked ATP aptamer 

sequence[19], as shown in Figure 3.1, to 

produce an ATP sensor. As shown in 

Figure 3.6, we observed significant 

signal over background in the presence 

of 1 mM ATP but no response in the 

presence of GTP. These data 

demonstrate the specificity of our small 

 
 
 
 
 
 
 
 

 
Figure 3.6 - Aptamer Sensing Using 
Modular DNAzyme Sensors. Replacing the 
detection module with an ATP aptamer 
enabled small molecule sensing. The ATP 
sensor used a 5 nt loop instead of the typical 
8 nt loop. Kinetic traces showed a highly 
specific response to 1 mM ATP concentration, 
with no activation in the presence of a related 
small molecule (GTP) at 1mM. Sensor 
concentrations were 100 nM with 15 nM 
excess inhibitor.  
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molecular sensor and show that our unified sensor architecture can detect a range 

of target types. Constraints imposed by the kinetics of the ATP aptamer (Figures 

AI.3-AI.5) required us to use a 5 nt loop toehold rather than an 8 nt toehold, and 

the incorporation of other aptamers may require similar minor sensor 

modifications. The wide variety of available aptamer sequences, in conjunction 

with our modular sensor design, provides great flexibility that may be leveraged in 

future work to detect metabolites in complex biological mixtures. This may serve 

as an alternative or supplemental means of detecting pathogenic bacteria. 

A key aspect of our sensor design is the use of a bulge to sequester the 

secondary toehold where the fuel strand binds. This is a non-standard approach 

to the design of multi-step DNA strand displacement processes, which typically 

rely on spontaneous dissociation of the secondary toehold following incomplete 

strand displacement. Our approach enabled us to implement a two-step strand 

displacement reaction using a two-strand complex, as opposed to the three-strand 

complex that is typically required[1a, 20]. Control experiments (Figure AI.2) showed 

that the DNAzyme-inhibitor complexes are highly stable in the absence of the fuel 

strand, even in the presence of the target sequence. However, this was a potential 

source of leakage (unwanted DNAzyme activation) due to unwanted fuel binding 

to the single-stranded toehold in the bulge in the absence of target binding. This 

effect was exacerbated by imperfections in the sensor complex and breathing of 

the duplexes near to the secondary toehold bulge. We minimized leakage in our 

designs by introducing a number of mismatched bases into the toehold and branch 

migration domain on the fuel strand [21]. A comparison of the performance of sensor 
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variants with different toehold loop lengths and patterns of mismatches is 

presented in Figures AI.6 and AI.7. Our chosen design employed an 8 nt toehold 

loop, with two mismatches in the loop adjacent to the beginning of the branch 

migration domain and a partial (G-T) mismatch in the first base of the migration 

domain. We used this toehold design in all experiments reported in this paper 

except for the ATP sensing experiments, as discussed above. Each sensor toehold 

used a universal sequence chosen from a restricted three-base alphabet (A,C,T) 

to prevent unwanted binding interactions. Alternative toehold sequences can be 

used for each of the sensors to obtain similar results (Figures AI.8-AI.11). 

Our approach to pathogen detection has the advantage of simplicity 

compared with approaches based on protein enzymes, such as the polymerase 

chain reaction (PCR), strand displacement amplification[22], rolling circle 

amplification[23], or other isothermal nucleic acid amplification approaches[24]. Our 

rational engineering approach to sensor design is distinct from approaches based 

on selecting DNAzymes for affinity for the various products excreted by bacteria 

using directed evolution[25]. However, the methods we used for preparing dsDNA 

samples prior to detection could also be integrated with other groups’ work on 

DNAzyme-based pathogen sensing[26]. While PCR remains the gold standard for 

nucleic acid detection in terms of sensitivity, it is protein-based and is not 

isothermal, which may hinder application in resource-poor areas. Although our 

sensor architecture addresses such limitations, our aim is not to compete directly 

with PCR; rather it is to provide an assay format that is more specific, flexible and 
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cost-effective than alternative approaches, such as the enzyme-linked 

immunosorbent assay (ELISA). 

In summary, this work explores the concepts required to create nucleic acid-

only detection systems for the isothermal detection of a range of targets. We have 

designed a unified sensor architecture and applied it to the detection of 

oligonucleotides, double-stranded plasmid DNA, and small molecules. The 

modularity of the unified sensor architecture allowed new sensors to be easily 

designed to target new genetic variants, enabling swift detection of emerging and 

evolving pathogen strains. Furthermore, our design requires only simple 

modification of the reporter module to cleave a different substrate sequence. This 

enables the use of different readout substrates to multiplex the detection of 

different targets in a single assay. In the solution phase, each substrate would be 

monitored in a separate fluorescent channel. In a flow cytometry assay format, 

substrates labeled with a single fluorophore could be monitored via a multiplex set 

of fluorescently dyed microspheres. 

These sensors achieved direct detection of single-stranded targets at a limit 

of detection of ~15 pM and ~5 nM for isothermally denatured double-stranded 

targets. The LOD obtained from the single-stranded targets was nearly 250 times 

lower than for denatured plasmid targets, which may be due to various factors 

including diffusion rates, the presence of competing sequences, and steric 

hindrance and/or secondary structure occluding the target site. However, 

prediction of the secondary structure of plasmids is particularly challenging due to 

the lack of computational algorithms for modeling large, circular DNA strands. The 
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response times and limits of detection for double-stranded DNA targets may be 

improved by a deeper understanding of the underlying biophysical principles, 

which would enable the optimization of preparation protocols. The incorporation of 

additional molecular signal processing motifs, such as signal amplification via input 

recycling,[6, 8a] may also improve limits of detection by increasing the rate of signal 

generation. 

3.3 Experimental Section 
3.3.1 Materials 

All oligonucleotides were purchased from Integrated DNA Technologies 

(Coralville, IA). Substrate molecules (DNA-RNA chimeras) were purified by 

RNase-free HPLC by the manufacturer. The Emerald GFP (pRSET-emGFP) 

plasmid was purchased from Life Technologies (Grand Island, NY). The PinPoint 

Xa plasmid was purchased from Promega (Madison, WI). Sequences for all 

oligonucleotides used herein are presented in Tables A-I.1 - A-I.6 in the Supporting 

Information. 

3.3.2 Sensor Preparation 
DNAzymes and inhibitors were heated together at 95 °C for 3 minutes on a 

heat block, and subsequently annealed by cooling to room temperature over a 

minimum of 90 minutes. Typical reaction concentrations were as follows, unless 

otherwise noted: 5 nM DNAzyme, 5.75 nM inhibitor, 5 nM fuel, 5 nM target DNA 

oligomer, 25 nM plasmid DNA, and 250 nM substrate, except in experiments to 

investigate individual sensor performance and LOD, which were run at 50 nM 

substrate. 
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3.3.3 Plasmid Preparation 
Plasmids were transformed into SCS110 cells (Aligent Technologies, Santa 

Clara, CA) and grown in LB media (Becton-Dickenson, Franklin Lakes, NJ). 

Plasmid DNA was extracted with a Qiagen Maxiprep kit (Valencia, CA) into H2O. 

The plasmid denaturation used a previously established protocol[27]. Briefly, 2 parts 

1M NaOH was added to 9 parts plasmid in H2O. After 10 min, 2 parts 1M HCl was 

added. 

3.3.4 Limit of Detection Calculation 
For these experiments (Figures 3.3c and 3.4d), the system contained 1 

nM/sensor concentration with 150 pM excess inhibitor and 1 nM fuel for each 

sensor. The background signal in the absence of input has been subtracted from 

all traces. Thick lines are mean fluorescence values from 5 replicates, and thin 

broken lines are one standard deviation above and below the mean in each case. 

Data points plotted as a cross (right axis) indicates the limit of detection using the 

IUPAC definition: 3 standard deviations over background[28].  

3.3.5 Assay Conditions and Instrumentation 
All assays were performed at room temperature (23 °C) in a buffer of 1M 

NaCl, 50 mM HEPES, 1 mM ZnCl2, pH 7.0. Fluorescence was read on a 

Spectramax M2e fluorescent plate reader (Molecular Devices, Sunnyvale, CA) in 

a 200 μL reaction volume (492 nm excitation, 518 nm emission). 
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4.1 Keywords  
DNA-lipid conjugates, supported lipid bilayers, multiplexing, toehold-mediated 

strand displacement, DNAzymes, detection platform, molecular computation 

4.2 Abstract 
We report a versatile microsphere-supported lipid bilayer system that can 

serve as a general-purpose platform for implementing DNA nanotechnologies on 

a fluid surface. To demonstrate our platform, we implemented both toehold-

mediated strand displacement (TMSD) and DNAzyme reactions, which are 

typically performed in solution and which are the cornerstone of DNA-based 

molecular logic and dynamic DNA nanotechnology, on the surface.  We 

functionalized microspheres bearing supported lipid bilayers (µSLBs) with 

membrane-bound nucleic acid components. Using functionalized µSLBs, we 

developed TMSD and DNAzyme reactions by optimizing reaction conditions to 

reduce non-specific interactions between DNA and phospholipids and to enhance 

bilayer stability. Additionally, the physical and optical properties of the bilayer were 

tuned via lipid composition and addition of fluorescently tagged lipids to create 

stable and multiplexable µSLBs that are easily read out by flow cytometry. 

Multiplexed TMSD reactions on µSLBs enabled the successful operation of a 

 
Figure 4.0 – Abstract Figure. 
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Dengue serotyping assay that correctly identified all sixteen patterns of target 

sequences to demonstrate detection of DNA strands derived from the sequences 

of all four Dengue serotypes. The limit of detection for this assay was 3 nM.  

Furthermore, we demonstrated DNAzyme reactions on a fluid lipid surface, which 

benefit from free diffusion on the surface. This work provides the basis for 

expansion of both TMSD and DNAzyme based molecular reactions on supported 

lipid bilayers for use in molecular logic and DNA nanotechnology. As our system 

is multiplexable and results in fluid surfaces, it may be of use in 

compartmentalization and improved kinetics of molecular logic reactions, and as a 

useful building block in a variety of DNA nanotechnology systems.  

4.3 Introduction 
The field of DNA nanotechnology uses biomolecules to construct computing 

components analogous to those in electronic computers,1-3 and to build synthetic 

nanostructures to study molecular interactions.4,5 DNA is attractive for these 

applications as Watson-Crick base pairing enables straightforward programming 

of molecular interactions.1,2 DNA-based biomolecular computation has been used 

for bioassays targeting pathogen signatures and to integrate detection of multiple 

pathogen signatures into a single reaction.6-13 However, non-specific interactions 

arising from background environmental nucleic acids and from molecular crosstalk 

due to lack of component separation in solution, can severely limit assay 

performance.6  

DNA-based molecular computation is typically performed in solution using 

toehold-mediated strand displacement (TMSD), DNAzymes, or a combination of 

the two approaches.6,10 TMSD molecular computing systems are an enzyme-free 
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mechanism wherein target strands interact with a gate complex composed of a 

template strand partially hybridized to an incumbent strand.2 The gate has a 

double-stranded DNA (dsDNA) region with a short single-stranded DNA (ssDNA) 

overhang on the template strand, referred to as a toehold, which serves as a 

nucleation site for target strand binding. The target then displaces the incumbent 

strand from the template via branch migration. Formation of the resulting 

target/template complex can be programmed to be thermodynamically favored due 

to a net increase in the number of base pairs. DNAzymes, on the other hand, are 

single stranded DNA oligonucleotides that catalyze a variety of chemical reactions 

in the presence of divalent metal ions.14,15 Of particular interest are DNAzymes that 

cleave partially complementary chimeric DNA substrate molecules at a single RNA 

base, such as the 8-17 DNAzyme, chosen for this work due to its small size and 

high catalytic activity.1,6,10,16-18 In DNAzyme-driven molecular computation, input 

signals activate DNAzymes, each of which can cleave multiple substrate 

molecules, enabling signal amplification via catalysis.  

Here, we have explored the use of supported lipid bilayers on silica 

microspheres (µSLBs) as a scaffold for both TMSD networks and DNAzyme 

reactions.  In this system, our nucleic acid components are covalently linked to 

head groups of the supported lipid bilayer. This approach provides a mechanism 

to easily segregate or compartmentalize elements of these reactions from each 

other and from nucleic acids in solution. This offers the potential to reduce 

nonspecific crosstalk within the system and to improve the scalability of DNA 

based reactions by permitting the reuse of nucleotide sequences without causing 
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crosstalk.  Alternatively, we sought to improve scalability through the incorporation 

of fluorescently tagged lipids into the µSLB system, which provides a 

straightforward method for multiplexed analysis that can be easily monitored via 

flow cytometry.19 This approach offers benefits for many practical applications, 

such as bioassay development. Analogous technology (fluorescently multiplexed 

polystyrene microspheres) has simplified pathogen assays by enabling the 

detection of multiple signatures in a single solution via flow cytometry20 and 

provides highly quantitative and rapid analysis.21 However, lipid bilayers are not 

readily formed on polystyrene microspheres, making our µSLB system an 

excellent alternative. While others have used lipid bilayer based systems for 

nucleic acid based reactions, these systems were not easily analyzable or 

multiplexable.22-24 To demonstrate the value of our approach, we developed a 

bivariate fluorescence tagging approach to increase µSLB multiplexing levels and 

we demonstrated multiplexed µSLBs for a TMSD assay that accurately types DNA 

sequences derived from the genomes of the four Dengue virus serotypes.   

Although the spatial isolation of molecular computation components via 

immobilization to fixed surfaces (e.g., direct attachment to polymer microspheres25 

and onto DNA origami scaffolds26-28) has been explored, reactants in these 

systems are constrained to their anchor points and cannot interact with molecules 

outside of the reach of their initial location.  This limitation is most relevant to 

DNAzyme systems, which could otherwise provide signal amplification via multiple 

turnover cleavage of substrates. Therefore, the final goal of this work was to 

overcome this issue by linking DNAzymes and their substrates to lipid head groups 
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incorporated into multiplexable microsphere-supported lipid bilayers (µSLBs).  The 

intent of this approach is to enable surface diffusion of DNAzymes so that they can 

interact with substrate molecules independent of their attachment position.  

Surface diffusion might also improve reaction kinetics, as diffusion on a two-

dimensional surface is more constrained than the three dimensions available to 

solution phase reactions.26,29-31 

In summary, we present a µSLB system that enables the 

compartmentalization of DNA-based molecular computing components. This 

system is multiplexable, which allows components to be independently monitored 

in a single tube reaction. Thus, by restricting DNA-based molecular computing 

components to a µSLB, we are able to design a detection platform that targets 

specific pathogenic signatures and uses flow cytometry for analysis. This has the 

potential to greatly reduce non-specific interactions, which would enable the 

creation of more complex DNA-based molecular reaction networks.   

4.4 Experimental Section 
4.4.1 Materials 

Lipids were purchased from Avanti Polar Lipids (Alabaster, AL). 

Oligonucleotides were purchased from Integrated DNA Technologies (IDT, 

Coralville, IA).  Ethylenediaminetetraacetic acid (EDTA), disodium phosphate, 

sodium chloride, and citric acid were purchased from EMD Millipore (Billerica, MA). 

Nucleosil (50-10) silica microspheres were purchased from GFS Chemicals 

(Powell, OH). Illustra NAP-5 Columns Sephadex G-25 DNA Grade were 

purchased from GE Healthcare Life Sciences (Pittsburgh, PA). All other reagents 

were purchased from Sigma Aldrich (St. Louis, MO). 
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4.4.2 Silica Microsphere Preparation 
To prepare the surface, silica microspheres (SiMS) were treated in a basic 

solution containing 4% NH4OH and 4% H2O2 at 80 oC for 10 minutes. The SiMSs 

were rinsed three times with distilled water and treated with an acidic solution 

containing 4% HCl and 4% H2O2 at 80oC for 10 minutes.  Finally, SiMSs were 

rinsed five times with distilled water. After this final wash the SiMSs were 

suspended in citric acid buffer (CAB6.5) (20mM citric acid, 35 mM disodium 

phosphate, 108 mM NaCl, 1 mM EDTA at pH 6.5). In addition, the SiMSs were 

preloaded with an inert oligo (Blocking strand_TSF) to prevent migration of the 

DNA-lipid conjugates into the porous SiMS by rotating at room temperature for 12 

hours with a strand concentration of 10 µM. 

4.4.3 Preparation of μSLBs for Multiplex  
Four separate lipid mixtures were dried overnight under vacuum, and then 

hydrated in citric acid buffer (20mM citric acid, 35 mM disodium phosphate, 108 

mM NaCl, 1 mM EDTA at pH 6.5 (CAB6.5)). The lipid solution was then extruded 

to generate monodispersed unilamellar vesicles (100 nm). These unilamellar 

vesicles were then used to coat 6.7x106 SiMS, by vortexing on high for 10 minutes, 

followed by low for 30 minutes at 37 oC. The lipid-coated SiMSs were washed 3 

times in CAB6.5 to remove the 100-fold excess of vesicles. The first vesicle 

population (P1) was composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-

phosphocholine (POPC), with 10 mol% 1,2-dioleoyl-sn-glycero-3-

phosphoethanolamine-N-[4-(p-maleimidophenyl) butyramide] (MPB PE) 

incorporated into the lipid cake. No fluorescently labeled lipids were included in 

P1. The second population (P2) contained the same lipid mixture as 1, plus 0.5 
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mol% 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(carboxyfluorescein) 

(PECF). The third population (P3) was the same as 1, plus 0.5 mol% 1,2-dioleoyl-

sn-glycero-3-phosphoethanolamine-N-(lissamine rhodamine B sulfonyl) (PELR). 

The fourth population (P4) contained the same as P1, plus 0.5 mol% PELR and 

0.75 mol% PECF.  

4.4.4 Preparation of μSLBs for DNAzyme Reactions 
The above procedure was used for the DNAzyme experiments, minus the 

fluorescently tagged lipids. DOPC was used in place of POPC to increase 

diffusivity of the bilayer, and the amount of MPB PE was reduced from 10 mol% to 

1 mol% (representing 4.5×106 DNA-lipid conjugates/µSLB). This change was 

made to reduce the density of conjugated components on the surface: at 1 mol% 

MPB PE there is approximately 1 DNA-lipid conjugate per 70 nm2 of bilayer, as 

opposed to 1 per 7 nm2 if 10 mol% MPB PE is used.  

4.4.5 Conjugation for the Multiplexing  
The 5’ Thiol Modifier C6 S-S strand was deoxygenated and reduced in CAB 

(pH 5.0) (CAB5.0) containing 50 mM dithiothreitol (DTT) for 90 minutes at room 

temperature. The DTT was removed using a NAP-5 column and the sulfhydryl 

solution was stored at 4 oC in CAB5.0. The various µSLB populations were then 

deoxygenated and the reduced thiol oligonucleotide was added into the 

deoxygenated µSLB solution at a final concentration of 500 nM, in 500 µL CAB6.5. 

This solution was further deoxygenated for 15 minutes and then sealed with 

parafilm and rotated at 4 oC for 12 hours. The µSLBs were washed 3 times with 1× 

phosphate buffer saline (PBS). The µSLBs were coated with bovine serum albumin 

(BSA) (100 µg/mL, rotated for 30 minutes). BSA is negatively charged at the 
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physiological pH used in our assays32 and is used to stabilize the membrane.33 

The µSLB were washed another three times in PBS, resulting in a final 

concentration of 500 nM thiol strands available for hybridization to the TMSD gates 

(for 10 mol% MPB PE).  

4.4.6 Conjugation for DNAzyme Experiments 
The above procedure was modified to include two of three thiol strands, one 

that hybridizes the DNAzyme (TSD), or one that hybridizes neither the DNAzyme 

nor the substrate (TSF), and a second strand that hybridizes to the substrate 

molecule (TSS). In addition, the Na+ concentration in all buffers was doubled (from 

the PBS level of 138 mM) to a final concentration of 276 mM (E276-0). The thiol 

strands were added at different concentrations to achieve a 4-fold excess of TSS. 

The final concentration of thiol strands available for hybridization is 50 nM, for 1 

mol% MPB PE. These µSLBs were also blocked with BSA using the above 

protocol. 

4.4.7 Strand Design for TMSD Reactions  
The sequences of the viral genomes for the four dengue serotypes were 

obtained from the National Center for Biotechnology Information (NCBI) website. 

Target oligomer subsequences of length 18 nucleotides from each of the four 

serotypes were then selected using a custom algorithm, as follows. A sliding 

window of size 18 nucleotides was used to compare each candidate target 

sequence for a given serotype with all 18-mers from the other three serotypes. A 

candidate target sequence was rejected if it contained a contiguous subsequence 

that matched any 18-mer sequence from any other serotype longer than a 

specified threshold length of 8 nucleotides. This test eliminated potential targets 
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with long sequences shared with any other serotype genome. For each candidate 

sequence that passed this initial test, the Hamming distance (defined as the 

number of positions at which two sequences of same length differ) was computed 

between the candidate and each of the 18-mer windows from the other three 

serotype genomes. For each candidate target, the minimum Hamming distance 

observed was recorded, and the candidate targets were sorted in descending 

order of the minimum observed Hamming distance. Thus, the targets with larger 

minimum observed Hamming distances were those which showed the least 

similarity with subsequences from the genomes of the other dengue serotypes. All 

sequences are listed in Table AII.1. For each candidate target sequence, the 

NUPACK secondary structure prediction algorithm34 was used to compute the 

individual base-pairing probabilities of each base in the target oligomer at 

equilibrium, along with the minimum free energy structure and the associated free 

energy. These were recorded and manually inspected to identify target oligomers 

that displayed the minimal secondary structure, as oligomers without significant 

secondary structure can more efficiently initiate and execute TMSD reactions. 

Template strands are fully complementary to each of the selected targets. The 

incumbent strands match the corresponding target sequences, minus the toehold 

region at the 5’ end of the target sequences, and including 25 bases, which are 

complementary to the 3’ end of the standardized thiol strand. For each TMSD gate, 

the NUPACK secondary structure prediction algorithm34 was used to compute the 

individual base-pairing probabilities, to ensure minimal secondary structure.   
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4.4.8 Strand Design for DNAzyme Reactions 
Previously reported DNAzyme and substrate sequences were modified to 

include a subsequence that hybridizes to the TSD and TSS strands, 

respectively.6,10,17 All sequences are listed in Table AII.2. 

4.4.9 Hybridization of TMSD Gates 
For each µSLB population, the corresponding ATTO647-labeled incumbent 

strand [1 µM] was rotated at room temperature for 15 minutes, to allow complete 

hybridization to the standardized thiol strand. The µSLBs were washed three times 

in PBS. Next, the Iowa Black RQ-labeled template strand [1 µM] was rotated with 

the µSLB population at room temperature for 15 minutes, and the µSLBs were 

washed a final three times.  The µSLB concentration was then cut by ¼ to 1.5×106 

µSLBs/mL, before addition to the multiplex.  

4.4.10 Hybridization of DNAzyme Components 
For the solution phase DNAzyme experiments the Blocking strand_TSF at 

a final concentration of 50 nM was rotated at room temperature for 15 minutes, to 

create a dsDNA region on TSF. The µSLBs were washed three times and the 

fluorescently labeled substrate strand [50 nM] was then rotated for 15 minutes at 

room temperature, to allow hybridization to TSS. Finally, the µSLBs were washed 

three times in the E276-0 buffer (in the absence of ZnAc2). For the surface bound 

DNAzyme experiments, the DNAzyme strand at a final concentration of 50 nM was 

rotated with the µSLB population at room temperature for 15 minutes to allow 

hybridization to TSD, and the µSLBs were washed three times in E276-0. Next, 

the fluorescently labeled substrate strand [50 nM] was rotated at room temperature 

for 15 minutes, to allow hybridization to TSS. Finally, the µSLBs were washed three 

times in E276-0.  
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4.4.11 Multiplex Formation 
To generate the multiplex 50 µL of each µSLBs population, at 1.5×106 

µSLBs/mL, was added into 300 µL PBS, for a total volume of 500 µL, bringing the 

total µSLB concentration to 6×105 µSLBs/mL. If target was added, only 250 µL of 

PBS was added, and 50 µL of target at a final concentration of 50 nM was added 

to bring the final volume to 500 µL. The multiplexed µSLBs were rotated at room 

temperature for 1 hour and then tested on a Becton Dickinson (Washington, D.C.) 

LSR Fortessa flow cytometer. All µSLB populations were initially plotted on a 

forward scatter (FSC) versus side scatter (SSC) plot (see Supporting Information 

Figure AII.1a), the µSLBs within this gate were then plotted on a green PECF 

(488/515-545 nm) versus yellow PELR (561/575-590 nm) plot (Supporting 

Information Figure AII.1b).  

4.4.12 TMSD Reactions 
Initial strand tests were run on individual TMSD gates, hybridized to the 

corresponding µSLB population, using the same parameters as those used for the 

multiplex experiments. Three separate samples were prepared for each TMSD set. 

A positive control was established by hybridizing the fluorescently labeled 

incumbent strand, Supporting Information Figure AII.2, in the absence of template 

strand. Next the incumbent and template strand, which comprised the complete 

TMSD gate, were hybridized to the corresponding µSLB, the second bar (black) of 

Supporting Information Figure AII.2. Finally the corresponding target sequences 

were added to the µSLB population with the complete TMSD gate hybridized, 

shown in red with black stripes of Supporting Information Figure AII.2. 
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4.4.13 DNAzyme Reactions  
For the solution phase DNAzyme and surface-bound substrate reactions, 

the substrate is added in excess to the µSLB solution. After 15 minutes of rotation 

at room temperature we wash away the excess substrate and add solution phase 

DNAzyme at a given concentration. Our surface-bound DNAzyme and substrate 

setup begins by adding DNAzyme in excess to the µSLBs with TSD covalently 

linked to the MPB PE, which creates a surface that has DNAzyme bound to all 

available TSD strands. These µSLBs are washed and resuspended to remove free 

DNAzyme in solution.  The substrate molecule is added in excess, and washed. 

This process creates a surface that has all TSS sites taken up by substrate and 

the DNAzyme molecules either bound to the surface-bound substrate or an excess 

substrate. After hybridization of the substrate and DNAzyme, the µSLBs were 

rotated at room temperature in 25 µM Zn2+ (E276-25) buffer.   

4.4.14 Confocal Microscopy 
To verify that DNA-lipid conjugates were freely diffusing on the surface of 

µSLBs, a multi-photon laser scanning confocal microscope (Olympus FV1000, 

Tokyo, Japan) with a fluorescence lifetime imaging attachment (Becker & Hickl, 

Berlin, Germany) was used for fluorescence recovery after photo bleaching 

(FRAP) experiments. The DNA tag (Cy5, 647/670 nm) laser was run at 15% 

transmissivity. Run mode was 40 µs/pixel, and stimulus mode was one pre-
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activation frame, and 5 activation frames. The FRAP interval was 3.264 

seconds/frame (see Movie AII.1).  For the FRAP experiments the Cy5-tagged oligo 

was hybridized to a thiol strand, which was conjugated to MPB PE (incorporated 

at 0.5 mol%). The FRAP experiments were run with one batch of MPB PE lipid, 

the cost of which prohibited replicates across batches, a second data set, from this 

batch, is included (Supporting Information Figure AII.3).  

4.5 Results and Discussion  
4.5.1 Preparation of µSLBs 

The µSLBs consist of a 10 µm mesoporous silica microsphere bearing a 

supported POPC or DOPC phospholipid bilayer that contains up to two 

fluorescently tagged phospholipids for multiplexing and maleimide phospholipids 

for covalent coupling of DNA molecules that serve as linker strands (Figure 4.1A). 

Figure 4.1 - Silica Microsphere Supported Lipid Bilayers (µSLB) A) The supported lipid bilayer 
(SLB), with a POPC (black circles) base coating a 10 µm SiMS. To generate distinct spectral 
addresses 0.5 mol% of a lipid tagged with a green fluorophore (PECF) (green circles) and 0.5 mol% 
of a lipid tagged with a yellow fluorophore (PELR) (blue circles) are added.  The maleimide lipid 
(MPB PE) (magenta circles) is incorporated to enable conjugation of thiolated oligonucleotides. 
There is a ~2 nm aqueous layer between the microsphere and the bilayer (~5 nm), shown in cyan. 
The DNA at the surface of the SiMP is shown in blue, and its tag in red.  B) Four microparticle 
populations are then combined in a single tube. P1 – 90% POPC, 10% MPB PE. P2 – 89.5% POPC, 
10% MPB PE, 0.5% PECF. P3 – 89.5% POPC, 10% MPB PE, 0.5% PELR. P4 – 88.75% POPC, 
10% MPB PE, 0.5% PELR, 0.75% PECF. C) Bivariate flow cytometry data, showing the 4 
microsphere populations in a single tube. The green PECF channel (488/515-545 nm) is plotted on 
the x-axis, against the yellow PELR channel on the y-axis. 
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Above the transition temperature of the base lipid (-2 oC for POPC, and <-2 oC for 

DOPC), bilayers formed on mesoporous silica microspheres maintain the ability to 

diffuse laterally.35,36 Multiplexed µSLB populations are created by incorporation of 

lipids with fluorescently-labeled headgroups (one with a yellow rhodamine dye 

(PELR) and one with a green fluorescein dye (PECF)) at varying percentages 

(Figure 4.1B). µSLB populations were analyzed via multi-parameter flow 

cytometry and demonstrated a well resolved 4-plex (Figure 4.1C). We have 

created up to 9-plex µSLB populations (Supporting Information, Figure AII.1b). The 

approach here represents an advance over our recently reported single 

fluorophore indexing approach,19 as it allows facile creation of bivariate 

populations and higher multiplexing levels. Standard flow cytometry gating (Figure 

4.1C) let us use a single reporter fluorophore to monitor reactions taking place on 

individual microsphere populations, thereby enabling multiplexed reporting with a 

limited number of fluorophores. Within the time frame of our experiments the 

 
Figure 4.2 - Fluorescence Recovery After Photobleaching (FRAP). A) Frame directly after 
photobleaching. The blue circle shows the ROI that was bleached, and the white shows the 
reference. This image was processed in ImageJ (NIH) and a screenshot was taken to show the 
ROIs. Brightness and contrast were adjusted to overcome the dimness resulting from low 
concentrations. B) Six frames after photobleaching showing full recovery. The entire video is 
available for viewing (Movie AII.1). C) With 0.5 mol% MPB PE, which represents ~×106 DNA-lipid 
conjugates/μSLB. Using simFRAP the diffusion coefficient was calculated to be 0.25 μm2/sec. The 
decrease in overall fluorescence, seen in the Reference line as well, is due to photobleaching 
caused by scanning laser confocal microscopy. The error bars represent standard error of mean 
for 5 replicates. 
 

A B C
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microsphere populations remain discretely separated (Supporting Information, 

Figure AII.4). 

4.5.2 Demonstration of Lipid Bilayer Fluidity via FRAP  
Figure 4.2 shows DNA-lipid conjugate diffusion on a µSLB with 0.5 mol% 

MPB PE. While this concentration is predicted to provide ~106 conjugation sites 

per µSLB, typical conjugation efficiencies to the surface are expected to result in 

a small fraction of available sites to be covalently linked to the available thiolated 

lipids within the µSLB. Less than optimal conjugation efficiencies, along with 

potentially uneven partitioning of the MPB PE between the two leaflets of the 

bilayer33, make it difficult to provide a precise calculation of the number of Cy5 

molecules on the surface. Regardless, Figure 4.2 shows photobleaching (panel 

A) and then recovery (panel B), respectively, on the surface of a µSLB. For the 

FRAP experiments the Cy5 bearing DNA oligo was used because ATTO647 does 

 
Figure 4.3 - TMSD Reaction on µSLB Surface - The gate comprises an ATTO647-labeled 
incumbent strand hybridized to the thiol linker that attaches it to the µSLB. The µSLB is composed 
of POPC (black circles), a lipid with a headgroup labeled with a green fluorophore (green circles), 
and for the TMSD reactions MPB PE (magenta circles) is incorporated at 10 mol%. The part of the 
incumbent that is not hybridized to the linker is fully complementary to a longer Iowa Black RQ-
labeled template strand. Thus the gate complex has a double-stranded DNA (dsDNA) region with 
a short ssDNA overhang on the template strand. In the template/incumbent duplex fluorescence is 
blocked via fluorescence resonance energy transfer (FRET). Upon binding of the target strand 
branch migration begins. Eventually the template strand is displaced and fluorescence increases 
for the microparticle population.  
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not readily photobleach. The fluorescence data were plotted as a function of time 

(Figure 4.2C), and using the ImageJ plug-in simFRAP37, the diffusion coefficient 

was calculated as 0.25 µm2/second, which falls just below the expected range of 

0.5 – 5 µm2/second for fluid phospholipid bilayers at room temperature.33,38 While 

multiple factors, such as variance between lipid preparations or differing 

conjugation efficiencies might result in variations in this calculated value, the value 

is comparable to diffusion coefficients reported for DNA oligos tethered to 

vesicles.39 While further studies are underway to confirm the effect of DNA 

conjugation on lipid diffusion, it is evident from this data that DNA-lipid conjugates 

do diffuse and will allow DNA molecules to move from their original attachment 

point.  

4.5.3 Multiplexed TMSD Reactions 
To demonstrate the utility of multiplexed µSLBs, we constructed a Dengue 

serotype specific TMSD gate on each of four microsphere populations. The four 

gates were designed to target one of four single-stranded DNA (ssDNA) target 

sequences chosen from the genomes of the four dengue virus serotypes (Dengue 

1 – 4, from GenBank sequence accession numbers NC_001477.1, NC_001474.2, 

NC_001475.2, and NC_002640.1 respectively). Figure 4.3 presents the 

mechanism of a basic TMSD reaction in the context of the µSLB system. For the 

TMSD reactions, the linker strand sequence is complementary to a binding region 

on the TMSD gate structures. For each microsphere population, the corresponding 

TMSD gate was annealed and hybridized to the linker strand and washed (see 
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Supporting Information, Figure AII.5 for depiction of individual TMSD gates, and 

Figure AII.2 for functionality of individual TMSD gates). The four µSLB populations 

were combined in a single tube and various combinations of target strands were 

added at 50 nM, and the solution was rotated at room temperature for 1 hour. In 

the presence of the correct target sequence, the corresponding template strands, 

bearing quenchers, were displaced and fluorescence of the ATTO647 tagged 

incumbent strand increased due to dequenching. To demonstrate specificity, we 

used the four multiplexed receptor populations to detect all 16 possible 

combinations of the four target strands in 16 single tube assays with high signal-

to-background ratios (Figure 4.4). Using established methods,40 we calculated the 

limit of detection as 3 nM (see Supporting Information/Appendix II page 3). We 

include this value, not in direct competition with current DNA or RNA techniques 

that use target amplification (e.g., PCR), 41,42 but to establish the limits of the 

 
Figure 4.4 - Dengue Serotyping Assay. Response for all multiplexed microsphere populations, in 
the presence of 16 possible combinations of four ssDNA targets relevant to Dengue serotyping. 
For each chart the addition of target is indicated by +, lack of target is indicated by –. The lower 
right (- - - -) was used as a baseline, and was subtracted from the remaining 15 charts. This chart 
is not normalized, but plotted as median fluorescence. The other 15 charts were normalized to an 
arbitrary number (1 = 3.6×104 fluorescent units on the ATTO647 channel (640/663-677 nm)), which 
ensures that all values are plotted on the same scale. The limit of detection is 3 nM. Error bars 
represent standard error of mean for 3 replicates. 
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system,  which compare favorably with the nanomolar dissociation constants 

typically encountered in many bioassays. This system demonstrates the feasibility 

of using multiplexed µSLBs to monitor specific reactions in a multi-reaction system 

individually. 

4.5.4 Optimization of Conditions for DNAzyme Reactions 
To demonstrate the modularity of the µSLB platform, we also used it to 

perform DNAzyme reactions. To optimize experimental conditions for DNAzyme 

reactions, we began by studying the interactions of a fluorescent substrate analog 

with the µSLB surface in conditions typical of solution phase DNAzyme reactions 

(1 M NaCl, 1 mM ZnAc2, and 50 mM HEPES).6,10 The inclusion of ZnAc2 in this 

buffer was crucial because the 8-17 DNAzyme requires Zn2+ ions as cofactors for 

its catalytic activity.16 We show schematic scenarios in Figure 4.5 and report 

results in Figure 4.6. The blank µSLB (Figure 4.5A) had a non-complementary 

strand (TSF) conjugated to the bilayer, but was not exposed to the fluorescent 

substrate analog. The negative control µSLB (Figure 4.5B) contained the 

fluorescent substrate analog in solution with TSF. The experimental µSLB (Figure 

4.5C) contained the fluorescent substrate analog in solution with the correct linker 

strand (TSS) conjugated to the bilayer. Thus, nonspecific binding is likely occurring 

in both systems, and the equivalent binding levels suggest that at higher Zn2+ 

concentrations nonspecific binding is dominant. The purpose of including TSF in 

the negative control was to ensure that the total amount of DNA conjugated to the 

µSLB surface (and thus the electrostatic environment) was constant. Figures 4.5D 

and 4.5E depict the system in the absence of Zn2+ and Figure 4.5F depicts the 

system with Zn2+ at 0.1 mM. With 1 mM Zn2+, we saw the same amount of DNA 
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binding to the negative control µSLB as the experimental µSLB (Figure 4.6A). The 

lack of specific binding is consistent with the literature, which shows that divalent 

cations, such as Zn2+, form “salt bridges” between DNA and zwitterionic lipid 

headgroups (here, DOPC), leading to non-specific binding of DNA to the bilayer. 

43,44 Our results show that as Zn2+ is increased from 0 to 100 µM nonspecific 

binding increases.  In the absence of Zn2+ and at Zn2+ concentrations of 100 mM 

and below we see that non-specific binding is greatly reduced (Figure 4.6B), 

presumably due to reduced salt bridge formation. This data suggested that 25 µM 

was the optimal Zn2+ concentrations for specific TSS hybridization.  

 
Figure 4.5 - Non-Specific Interactions. A) Blank control, which has not been exposed to the 
fluorescently labeled (Cy5) strand.  B) Bead population with non-complementary TSF conjugated 
to the bilayer in the presence of 1 mM Zn2+. C) Bead population with TSS conjugated to the bilayer 
in the presence of 1 mM Zn2+. TSS is complementary and hybridizes the Cy5 labeled strand. D) 
Bead population with TSS conjugated to the bilayer in the absence of Zn2+. E) Bead population with 
TSF conjugated to the bilayer in the absence of Zn2+. F) Bead population with TSF conjugated to 
the bilayer in the presence of 0.1 mM Zn2+.  
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As solution phase experiments have routinely used 1 mM Zn2+ for optimal 

DNAzyme activity,6,10 we compared the activity of the DNAzyme at 25 µM and 1 

mM Zn2+ using a FRET substrate in solution. While the DNAzyme had reduced 

activity at 25 µM Zn2+ vs. 1 mM Zn2+, the reaction ran to completion in ~2 hours 

(Figure 4.6C). Finally, as lipids aggregate during extrusion in the presence of 1 M 

NaCl, which complicates the process of vesicle formation by extrusion, we tested 

the effects of reduced sodium chloride concentration on DNAzyme reactions run 

at 25 µM Zn2+(Figure 4.6D, for the kinetic traces see Figure AII.6). The experiment 

indicated that 276 mM NaCl performed similarly to the typical solution phase 

concentration of 1 M NaCl. Therefore, 276 mM was used in our DNAzyme 

experiments on µSLBs, as this concentration did not cause lipid aggregation. 

4.5.5 DNAzyme Reactions 
We configured µSLB-based DNAzyme reactions in one of two ways: in the 

first there is a solution phase DNAzyme and the substrate molecule is surface-

bound via hybridization to a partially complementary bilayer-conjugated oligomer 

(TSS), as shown in Figure 4.7A, and in the second both the DNAzyme and the 

substrate are surface-bound via conjugated linker strands, the substrate to TSS as 

before and the DNAzyme to an orthogonal linker strand (TSD), as shown in Figure 

4.7B. Both of these approaches are easily monitored through loss-of-fluorescence 

assays with flow cytometry,45,46 which provides excellent  discrimination between 

free vs. bound signals at the surface of microspheres.46 
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Figure 4.6 - Optimization of Buffer Conditions A) Three bead populations in the presence of 1 mM 
ZnAc2.  The blank bead population has TSF conjugated to the bilayer and has not been exposed to 
the fluorescently labeled (Cy5) strand, the second has TSF conjugated to the bilayer, and the third 
has TSS conjugated to the bilayer. Error bars represent standard error of the mean for 3 replicates. 
B) TSF and TSS bead populations in the presence of increasing ZnAc2 concentrations. Again, TSF 
will not hybridize the Cy5-labeled strand and so any fluorescence is a result of non-specific binding to 
the µSLB, and TSS does hybridize the Cy5-labeled strand and fluorescence above the TSF level is 
specific and due to hybridization to TSS.  C) Solution phase DNAzyme and solution phase substrate 
reaction with 1 mM ZnAc2, which is the standard concentration for DNAzyme reactions, and 25 µM 
ZnAc2. The 25µM reaction is slower compared to the standard but is completed at 2 hours. D) Relative 
rates of solution phase DNAzyme and solution phase substrate reactions in the presence of increasing 
Na+ concentrations. The standard DNAzyme concentration is 1 M; however, optimal rates were 
achieved at 276 mM Na+. 
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Using optimized assay conditions, we performed reactions where solution 

phase DNAzyme cleaved surface-bound substrates (Figure 4.7A) at varying 

concentrations of Zn2+.  While we observed signal (i.e., loss of fluorescence) at 

concentrations greater than 10 µM Zn2+, the best signal-to-noise ratio was 

observed at 25 µM Zn2+ (Figure 4.8A). The signal becomes unobservable at 

higher Zn2+ as a result of non-specific binding, which overwhelms any loss of 

fluorescence due to DNAzyme activity. The data presented in Figure 4.8A, along 

with the non- specific interaction experiments (Figure 4.6B), indicate that the 

optimal Zn2+ concentration is 25 µM. Having optimized the buffer conditions for the 

µSLBs system, we tested the effect of having higher concentrations of solution 

phase DNAzyme cleaving surface-bound substrate. Using the same setup as 

above, we added DNAzyme to the solution at final concentrations of 50 nM, 150 

 
Figure 4.7 - DNAzyme Reaction Schemes. A) Solution Phase DNAzyme - For all DNAzyme 
experiments, the lipid bilayer is composed of DOPC (black dots), which increases the diffusivity of 
the bilayer as compared to POPC, and MPB PE is incorporated at 1 mol%. For this first set of 
DNAzyme reactions there are 2 thiol strands conjugated: the thiol strand that hybridizes the 
substrate (TSS) and a space filler thiol strand (TSF). The DNAzyme hybridizes the surface-bound 
substrate, and cleavage occurs in the presence of metal ion cofactors, 25 µM Zn2+. After cleavage 
of the substrate the DNAzyme dissociates from the substrate-binding arms and returns into solution 
along with the fluorescently labeled upper portion of the substrate, and fluorescence decreases for 
the microsphere population. B) Surface-Bound DNAzyme - TSS and a thiol strand that hybridized 
the DNAzyme (TSD) present on the bilayer. The surface-bound DNAzyme and substrate diffuse 
and hybridize and cleavage occurs in the presence of metal ion cofactors, 25 µM Zn2+. After 
cleavage of the substrate the fluorescently labeled upper portion of the substrate moves into 
solution, and fluorescence decreases for the microsphere.   
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nM, 500 nM, and 1.5 µM. The microspheres were then incubated for 1 hour in the 

absence of Zn2+ prior to initiating the reactions with the addition of 25 µM Zn2+. The 

results (Figure 4.8B) show an increased loss of fluorescence at higher 

concentrations. The rapid initial loss of fluorescence at higher concentrations is 

likely due to an increased on-rate for the solution phase DNAzyme to the surface-

bound substrate. It is also notable that even at high concentrations of DNAzyme 

the cleavage does not remove all fluorescence from the µSLBs.  This is most likely 

due to either non-specific interaction between the fluorescent substrate and the 

µSLB or some level of substrate inaccessibility during the cleavage reaction.  

Finally, we aimed to demonstrate that surface-bound DNAzymes could 

cleave surface-bound substrates, as shown schematically in Figure 4.7B. Here, 

the ratio of substrate to DNAzyme on the surface is set by the initial conjugation 

reactions, so we added a 4-fold higher concentration of TSS (which hybridizes to 

the substrate) than TSD (which hybridizes to the DNAzyme). This estimate of a 4:1 

ratio of substrate to DNAzyme concentration on the surface assumes that there is 

no bias between the efficiency of conjugation for TSS and TSD. We believe that 

this assumption is valid because the only difference between the TSD and the TSS 

strands is in nucleotide sequence. However, the potential partitioning of the 

maleimide lipids33,38  and inability to guarantee highly efficient conjugation 

efficiency, due to low percentages of maleimide on the µSLB surface and/or charge 

effects of the phospholipid headgroups, precludes the precise calculation of 

surface-attached molecules. Regardless of the exact concentration of surface 

molecules, addition of Zn2+ at 25 µM results in rapid loss of fluorescence from 
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µSLBs compared with the negative control, a µSLB with TSF conjugated in place 

of TSD and no DNAzyme present, indicating successful cleavage of surface-bound 

substrate by surface-bound DNAzyme (Figure 4.8C). However, the loss of 

fluorescence is not complete, which is consistent with observations for solution 

phase DNAzyme cleaving substrate from µSLB 

surfaces. Again, this lack of completion may be due to non-specific binding of 

cleaved substrate to the µSLB surface or substrate inaccessibility, but it also might 

be due to more complex effects such as reduced dissociation of DNAzyme from 

cleaved substrates that are bound to a surface (see Appendix V for a description 

of efforts to destabilize the post cleavage products). Our graphical representations 

of the model show cleavage of the substrate molecule, but they do not show 

disassociation of the DNAzyme and lower portion of the substrate because we do 

not have evidence that disassociation is occurring. While it remains possible that 

reduced or limited diffusion of DNAzyme and substrates on the surface could also 

result in the observed incomplete cleavage, we do not believe such effects occur 

Figure 4.8 - µSLB-Based DNAzyme Reactions. A) Solution Phase DNAzyme – DNAzyme, in 
solution at a final concentration of 50 nM, and surface-bound substrate reactions in the presence 
of increasing Zn2+ concentration. Optimal cleavage was seen at 25 µM Zn2+. B) Solution Phase 
DNAzyme - Surface-bound substrate, with increasing solution phase DNAzyme concentrations. 
No DNAzyme was added for the black trace; this is our negative control. The blue trace is 50 nM 
DNAzyme, the green 150 nM, the orange 500 nM, and the red 1.5 µM. Error bars are standard 
error of the mean for 3 replicates. C) Surface-Bound DNAzyme – Reaction with both DNAzyme 
and substrate surface-bound, showing ~30% decrease in fluorescence. For this reaction there was 
a fourfold excess of TSS, compared with TSD. The reaction was run with 276 mM Na+ and 25 µM 
Zn2+.  Error bars are standard error of the mean for 3 replicates. 
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since a diffusion coefficient of 0.25 µm2/sec is measured for the conjugated DNA 

molecules on µSLB surfaces (Figure 4.3 and Movie AII.1).  

Future work will investigate the detailed mechanisms of DNAzyme reactions 

on µSLB surfaces, which are expected to be affected by surface transport 

principles that have been explored in detail for receptor protein interactions on 

surfaces. 47 Such work will benefit from more robust methods of DNA integration 

into the bilayer, which include oligomer modifications such as cholesterol tags 

(preliminary efforts are presented in Appendix V), or copper(1)-catalyzed 

conjugation of an azide and an alkyne.48 Improving DNA integration into the bilayer 

will enable precise control over membrane bound DNA concentrations, which is 

critical to detailed mechanistic studies of such systems. Another fruitful direction 

may be to investigate programmable control of the diffusion rates of DNA 

components integrated with the bilayer, which might be achieved by modulating 

the physical properties of the bilayer or of the components themselves (e.g., to 

incorporate a second bilayer linker to provide additional drag on the diffusion 

process). Such a system could then potentially be used to implement two-

dimensional spatial patterning on the microparticle surface, such as that achieved 

via reaction-diffusion systems in protein systems on membranes49. 

4.6 Conclusions 
In summary, we implemented DNA-based molecular computing systems, 

using fluid, microsphere-supported lipid bilayers. These systems provide a 

multiplexable platform for bioassay development, and as a proof of concept here 

we designed DNA strand displacement gates for the detection of the four Dengue 

serotypes and demonstrated that every combination of the four targets was 
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correctly identified.  We then optimized the system to allow DNAzyme reactions to 

be carried out on a zwitterionic lipid bilayer, in the presence of divalent cations. 

The use of a fluid bilayer as the supporting surface allows multi-component 

reactions to be engineered, which may eventually be used for signal amplification 

if multiple turnover reactions can be demonstrated. Thus, this work offers a route 

toward the implementation of sophisticated, multi-reaction cascades on single 

particle surfaces and/or compartmentalization of particular reactions on individual 

particles. Such DNA-lipid conjugate systems, with stable and tunable bilayers that 

are easily monitored using flow cytometery, could lead to new smart materials with 

potential applications in targeted drug delivery, advanced molecular computation, 

and self-assembling nanomaterials.  

4.7 Associated Content 
4.7.1 Supporting Information 

The Supporting Information is available free of charge on the ACS 

Publications website at DOI: 10.1021/acsami.7b11046.  

The Supporting Information document includes all supplementary figures as 

described in the main text, details on strand design, the non-specific interaction 

controls, the limit of detection calculations, details on the confocal microscopy 

experiments, and merging data for multiplex microspheres. 

Three movies are included as well.  

Movie AII.1 (AVI): A video of Fluorescence Recovery After Photobleaching 

(FRAP) data for our microsphere systems. 
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Movie AII.2 (AVI): A video of a confocal stack of images of showing the 

fluorescence from the DNA lipid-conjugate as described in the text of the 

Supporting Information File. 

Movie AII.3 (AVI): A video of a confocal stack of images of showing the 

fluorescence from the lipid (PECF) channel as described in the text of the 

Supporting Information File. 
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CHAPTER 5 - RUNNING DNAZYME REACTIONS ON A SURFACE 
THAT BECOMES OVERWHELMINGLY ATTRACTIVE IN THE 
PRESENCE OF REQUISITE DIVALENT CATIONS 
 

5.1 Abstract 
 Zwitterionic phospholipids are 

commonly used for in vitro studies. In 

the absence of divalent cations, there 

is no non-specific interactions 

between DNA and the zwitterionic lipid 

headgroup. However, most DNAzyme 

require divalent cations and previous 

reactions buffers contained cations at 

1 mM. Here, we develop a system that 

allows DNAzyme reactions to be run on lipid surfaces, while ensuring little to no 

non-specific interactions. 

5.2 Introduction  
Although ubiquitous in biological systems lipid bilayers are very delicate, 

especially in the absence of supportive proteins and linkages to surrounding 

structures (i.e. extra cellular matrix proteins, cytoskeleton filaments, or biopolymers 

such as peptidoglycan that encapsulate and support membranes). Thus, in 

biological settings this two-dimensional fluid is stabilized by a three-dimensional 

supportive matrix. However, when simplifying these structures in vitro the vast 

majority of this support is lost. In addition, the hydrophobic interactions, which drive 

lipid bilayer assembly in aqueous environments, can easily be overwhelmed by 

electrostatic repulsion of the charged  headgroups,1 or by in vitro experimental set-

 
Figure 5.0 – Abstract Figure 



www.manaraa.com

 80 

ups that introduce charged surfaces. Further complicating lipid systems is their 

inherent instability in buffer systems which do not resemble biological systems, 

and their propensity towards degradation. Lipid degradation is a result of either 

lipid oxidation or the hydrolysis of ester bonds present in the lipid.2 Finally, when 

designing lipid systems that interface with nucleic acid systems the presence of 

ionic species can greatly alter behaviors of both the lipids and the nucleic acids.  

 The delicate nature of lipid bilayers requires they be treated with great care. 

Thus, many in vitro lipid bilayers systems are stabilized, and this is often achieved 

using a silica support. Supported lipid bilayers have been formed on planar silica 

surfaces3,4 and on spherical silica particles.5-7 The stability of these supported 

bilayers results primarily from an electrostatic interaction between the negatively 

charged silica surface and the positively charged amine group at the terminus of 

zwitterionically charged phospholipid headgroups, such as 1,2-dioleoyl-sn-

glycero-3-phosphocholine (DOPC). Meaning, silica supported lipid bilayer systems 

require an external positive charge at the surface of the lipid bilayer, although in 

typical buffer solutions this positive charge is considered neutral due to the 

proximity of the negatively charged phosphate group. However, in the presence of 

divalent cations, which are attracted to the phosphate group, the positive charge 

becomes organized and increases in strength as the negative charge of the 

phosphate group is shielded by the divalent cation.  
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  Solution phase DNAzyme reactions are typically run with 1 M Na+ and 1 

mM Zn2+.8,9 In PBS (136 mM Na+), DNA’s  negatively charged phosphate 

backbone is not attracted to the external positive charge of a zwitterionic 

phospholipid. However, in the presence of 1 mM Zn2+, that external positive charge 

is no longer shielded by the neighboring phosphate and DNA’s phosphates want 

to party.10,11 In addition, the high Na+ concentrations can cause the lipids to 

aggregate, as evidenced by increased pressure during the extrusion process. As 

such, the buffer conditions used for solution phase DNA reactions will not work 

when running these reactions on supported lipid bilayer surfaces. There are two 

ways to approach this problem - the lipid composition can be adjusted, or the buffer 

conditions can be altered. This works presents an investigation into the most 

 
Figure 5.1 - Lipid Structures. All structures taken from Avanti Polar Lipids website. A) 1,2-
dioleoyl-sn-glycero-3-phosphocholine (DOPC), with a naturally occurring lipid with a zwitterionic 
headgroup. B) 2-((2,3-bis(oleoyloxy)propyl)dimethylammonio)ethyl hydrogen phosphate 
(DOCP), a zwitterionic inverted headgroup lipid that is not stable on silica surfaces. C) 2-((2,3-
bis(oleoyloxy)propyl)dimethylammonio)ethyl ethyl phosphate (DOCPe), a zwitterionic inverted 
headgroup lipid, which is stable on silica surfaces. 
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effective methods for running DNA reactions on fluid silica microsphere supported 

lipid bilayers (µSLBs).  

5.3 Results and Discussion 
5.3.1 DOPC, DOCP, and DOCPe Structures 

Small amounts of charged, anionic or cationic, lipids can be incorporated 

into neutral zwitterionic phospholipids without disrupting stability. However, at 

higher concentration electrostatic repulsion of the headgroups will destabilize the 

bilayer. As such, neutral lipid headgroups must comprise the majority of a lipid 

bilayer.  In biological systems the most abundant lipids are zwitterionic such as 

DOPC (Figure 5.1A), although there are completely uncharged lipid head groups 

such as monogalactosyldiacylglycerol.12 Recently, inverted headgroup lipids have 

become commercially available. The simplest of these inverted headgroup lipid 2-

((2,3-bis(oleoyloxy)propyl)dimethylammonio)ethyl hydrogen  phosphate (DOCP, 

Figure 5.1B) simply flips the location of the negatively charged phosphate group 

and the positively charged amine group. However, this inversion renders DOCP 

unstable on silica surfaces.13 A second version of the inverted headgroup lipids 2-

((2,3-bis(oleoyloxy)propyl)dimethylammonio)ethyl ethyl phosphate  (DOCPe, 

Figure 5.1C) adds an ethyl to the shield the negative charge at the surface, which 

allows  bilayers to be formed on silica surfaces.13  
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  To begin, we formed µSLBs with DOCPe as the base lipid with 0.5 mol% 

of the fluorescently tagged lipid 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-

N-(carboxyfluorescein) (ammonium salt) (PECF) so we could monitor bilayer 

stability with a flow cytometry. We compared this to µSLBs formed using DOPC as 

the base lipid, because unilamellar bilayer formation with DOPC was well 

established.5 When the DOCPe coated µSLBs were tested alongside the DOPC 

µSLBs we noted a doubling in fluorescent intensity (Figure 5.2). Indicating that 

multilamellar structures, which would increase the amount of PECF present at the 

surface of the µSLB, were most likely being formed.  

 Nonetheless we decided to investigate whether or not DOCPe would 

decrease the non-specific interaction between oligonucleotides and the bilayer 

surface in the presence of 1 mM Zn2+. To test this, we incorporated a maleimide  

lipid, 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-[4-(p-maleimidophenyl) 

butyramide] (MPB PE), into both the DOPC and DOCPe lipid bilayer. We could 

 
Figure 5.2 – DOCPe Forms Multilamellar Structures. Silica microsphere supported lipid 
bilayer, in PBS, with 0.5 mol% PECF in DOPC or DOCPe. Error bars represent SEM of 3 
replicates. 
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then conjugate thiolated oligonucleotides to MPB PE, using the protocol outlined 

in Chapter 4. The first thiolated oligonucleotide (TSD) served as our negative 

control, as is was not complementary to a Cy5 tagged oligonucleotide 

(Cy5_Substrate_no_r_TSS, see Table A-II.2 for sequences). The second 

oligonucleotide (TSS) served as our experimental as it was complementary to 

Cy5_Substrate_no_r_TSS, meaning we should only see high fluorescence for this 

bead population. In PBS both lipids systems show low fluorescence when TSD (-) 

is conjugated to the bilayer and high fluorescence when TSS is conjugated (Figure 

5.3A). In the E6 buffer (50 mM HEPES, 1 M NaCl, 1 mM ZnCl2), which has been 

used for DNAzyme reactions by our group in the past, we saw a decrease in non-

specific binding of the fluorescently tagged strand for DOCPe compared to DOPC 

(Figure 5.3B). However, the decrease in non-specific binding was not significant 

enough to justify working with the multilamellar structures formed by DOCPe, so 

we decided to investigate a DNAzyme that does not require divalent cations.  

 
Figure 5.3 – Non-Specific Interaction with DOPC vs DOCPe. A) Both lipids, with 1 mol% 
MPB PE, 0.5 mol% PECF, in PBS (138 mM Na+, no Zn2+). The negative controls has TSD 
conjugated to MPB PE, while the experimental has TSS conjugated. TSS is complementary 
to the Cy5 labeled Cy5_Substrate_no_r_TSS, while TSD is not.  B) The same lipids in E6 
buffer (1 M Na+, 1 mM Zn2+). Raw numbers are plotted to show the true negative values. 
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5.3.2 A Sodium Dependent DNAzyme 
 In 2015, a sodium dependent DNAzyme (NaA43) was  published,14 which 

presented an alternative to previously reported divalent cation-dependent 

DNAzymes. We initially tested the DNAzyme function in solution, using a chimeric 

substrate molecule (NaA43_SolPh_Substrate) similar to the one presented in 

Chapter 3. Figure 5.4A shows the results of a reaction run in PBS, made with 

RNAse free water. The 

NaA43_Enzyme strand [50 nM] 

rapidly cleaved its 

NaA43_SolPh_Substrate [250 nM] in 

this solution phase experiment 

(strand sequences are presented in 

Table 5.1). For the µSLB experiments 

we were expecting a decrease in 

fluorescence as the cleaved 

substrate would move into solution, 

and the bead’s fluorescence would 

decrease (as described in Chapter 4). 

Here we incorporated MPB PE at 1 

mol%, and conjugated both TSD and 

TSS, with a 4-fold excess of TSS. The 

reaction (Figure 5.4B) was run in 

PBS, and the beads were rotated at 

room temperature. Even at three 

 
Figure 5.4 – Na+ Dependent DNAzyme 
Function. A) The sodium dependent DNAzyme 
worked well in PBS. The substrate [250 nM] alone 
showed slight non-specific activation. However, in 
the presence of the DNAzyme [50 nM] we saw the 
expected increase in fluorescence within 30 
minutes. B) For the µSLB experiments we were 
expecting a decrease in fluorescence as the 
cleaved substrate would move into solution, Here, 
we incorporated MPB PE at 1 mol% and 
conjugated both TSD and TSS to the bilayer, with 
a four-fold excess of TSS.  
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hours, we did not see a decrease compared to our negative control (the substrate 

alone on the bead). 

5.3.3 Zinc Salts 
 So, we returned to the divalent cation dependent 8-17 DNAzyme and began 

adjusting our buffer conditions. The results presented in Chapter 4 demonstrated 

full DNAzyme function at Zn2+ concentrations as low as 25 µM. However, to 

achieve this level of function we needed to switch from the commonly used ZnCl2 

 
Figure 5.5 – Oxychloride Precipitates. A) Flow cytometry dot plot of forward scatter (FSC) 
versus side scatter (SSC) in the absence of ZnCl2, showing the SiMS population and debris. 
B) Same as A with 0.1 mM ZnCl2. C) Same was A with 1 mM ZnCl2. D) Same sample as C with 
the threshold decreased from 80,000 FSC units to 800 FSC units.  
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to ZnAc2 which does not form the oxychloride precipitate.15 We first noticed the 

oxychloride precipitates with flow cytometry, as with increasing ZnCl2 we saw in 

increase in debris on a forward 

scatter (FSC) versus side scatter 

(SSC) plot (Figure 5.5). In Figure 

5.5A, there is no ZnCl2 present in 

solution, we then increase to 0.1 mM 

ZnCl2 (Figure 5.5B) and 1 mM ZnCl2 

(Figure 5.5C). For Figure 5.5D, we 

ran the same sample as Figure 5.5C 

but decreased the threshold from 

8x104 FSC units to 800 FSC units to show a much larger population of what we 

believe to be oxychloride precipitates. We also began making fresh zinc buffers for 

every reaction, because we noticed decreased function when older zinc solutions 

were used (Figure 5.6). 

5.4 Conclusions and Future Directions 
 Working with lipids in the laboratory leaves little room for deviation from 

established parameters. Changing even a single parameter often results in system 

failure. Here, we present a description of our efforts to run DNAzyme reactions on 

stable silica supported lipid bilayers, with minimal non-specific interactions. An 

inverted head group lipid (DOCPe) was shown to slightly decrease non-specific 

interactions, but multilamellar structures, instead of unilamellar structures, were 

formed. We then tested the function of a sodium dependend DNAzyme, which 

worked in a solution phase reaction with PBS. However, when run on a lipid bilayer 

 
Figure 5.6 – ZnCl2 and ZnAc2, Fresh and Old. 
We tested DNAzyme function in the presence of 
both ZnCl2 and ZnAc2 both at 10 µM. With the 
DNAzyme [50 nM] and Substrate [250 nM], in a 
buffer that contained 276 mM NaCl, and 50 mM 
HEPES. The solid lines represent freshly made 
Zn2+ solutions, and the dashed lines represent 
a Zn2+ which sat on the bench for >1 month. 
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the reaction did not proceed. Finally, we optimized our buffer conditions, by using 

a zinc salt that did form precipitates which allowed us to decrease the Zn2+ 

concentration. 

5.5 Materials and Methods 
5.5.1 Materials 

All oligonucleotides were purchased from Integrated DNA Technologies 

(IDT, Coralville, IA). IDT purified unmodified strands by standard desalting, and the 

fluorescently tagged and thiolated strands were purified by high performance liquid 

chromatography. Lipids were purchased from Avanti Polar Lipids (Alabaster, AL).  

5.5.2 Bilayer Formation and Flow Cytometry  
Silica supported lipid bilayers were formed and analyzed as decribed in 

Chapter 4. 

5.5.3 Strand Sequences 
Table 5.1 – Strand Sequences 

Name Sequence 
NaA3_Enzyme 5’-GCGGCGGTACCAGGTCAAAGGTGGGTGAGGGGACGCCAA 

GAGTCCCCGCGGTTAGATAGAG -3’ 
NaA43_SolPh_Substrate 5’-/56-FAM/CTCTATCTATrAGGAAGTACCGCCGCT/36-TAMSp/ -3’ 
NaA43_Enzyme_TSD 5’- GAGTGTAGATGTGAAGTTTGAAAAAGCGGCGGTACCAGGTCA 

AAGGTGGGTGAGGGGACGCCAAGAGTCCCCGCGGTTAGATAG 
AGGCC -3’ 

NaA43_Substrate_TSS 5’-/5ATTO647NN/CTCTATCTATrAGGAAGTACCGCCGCAAAAAGTT 
TCTGTCTTGTTCTATTC -3’ 
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CHAPTER 6 - DNA FUNCTIONALIZED 
OLIGOPHENYLENEVINYLENES FOR TRANSMEMBRANE 
SIGNAL TRANSDUCTION  
 
6.1 Abstract 

Our aim in this work is to achieve nucleic acid-based transmembrane signal 

transduction via a dimerization event. To begin, we designed a molecule with 

dimensions to match biological membranes. The portion that spans the bilayer 

consists of an oligophenylenevinylene (OPV), with functional groups that are 

compatible with standard click chemistry reactions. After successful synthesis, the 

OPV was functionalized with oligonucleotides. Ultimately, two versions of this 

molecule, each representing one half of a split DNAzyme, will be inserted into a 

PEG cushioned, silica microsphere supported phospholipid bilayer and a nucleic 

acid input will tether the two DNAzyme halves. At this point, a chimeric substrate 

molecule, encapsulated within the vesicle, will be cleaved and fluorescence will 

increase within the vesicle. 

 
Figure 6.0 – Abstract Figure. 
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6.2 Introduction 
The incredible complexity of silicon-based computation is achieved using a 

small set of spatially isolated, standardized components (i.e. logic gates). Biology 

also reuses standard components to process information1,2 and the flow of this 

information is precisely controlled to prevent promiscuous interactions. 3,4 DNA-

based molecular computation has great potential in theranostic and diagnostic 

applications5,6 and in the development of biological models.5,6 However, to date 

most DNA-based systems have been run in well-mixed solutions, which lack 

spatial organization.7-10 In such systems the reuse of standardized components is 

not possible, as all components are free to interact and to prevent spurious 

interactions the nucleotide sequence of functionally similar components must be 

orthogonal, which significantly limits scalability.11  

Compartmentalization of computing elements using lipid bilayers, 

analogous to cell membranes, will potentially allow standardized components to 

be used. Lipid bilayers form the vast majority of compartments in cellular systems, 

including the cell membrane, the nuclear envelope and the mitochondrial 

membranes. For each biological compartment there exists a method for signal 

transduction and in most cases, this is achieved using integral membrane proteins 

(IMPs). For instance, receptor tyrosine kinases transduce signals via a 

dimerization event, while ligand binding in G-protein coupled receptors initiates a 

conformational change within the cell and pores selectively allow the passage of 

ions, nucleic acids and proteins.  For synthetic systems, signal transduction that 

are activated by nucleic acid inputs will allow a much broader range of activity in 

vitro and eventually in vivo. DNA-based synthetic pores have been designed,12-16 
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but there are no current methods to transduce signals via dimerization or 

conformational changes. Aptamers that allow dimerization to be monitored without 

genetically altering the IMP were recently introduced,17 however this system does 

not transduce a signal across the bilayer. To achieve this, a molecule which fully 

spans the lipid bilayer is required and oligonucleotides must be covalently linked 

to either end of this molecule. 

Oligophenylenevinylenes (OPV) are flexible hydrophobic conjugated 

oligomers that have been shown to span phospholipid bilayers.18 OPV chemistry 

allows functional groups to be placed at either end, to which nucleic acids can be 

conjugated using click chemistry.19 The resulting amphiphilic molecule can then be 

inserted into a phospholipid bilayer, as the length of the hydrophobic region of this 

compound matches the width of common lipid bilayers, making this molecule an 

excellent candidate for nucleic acid based transmembrane communication.  

A simple way to initiate signal transduction into the membrane compartment 

will be through the dimerization of two halves of a split DNAzyme. Split DNAzymes 

are pairs of molecules that have enzymatic activity once the pair is brought into 

close proximity, this is often achieved using a nucleic acid tether strand.20 The 

tether strand would be added into a solution containing lipid vesicles with two OPV-

DNA conjugates incorporated into the bilayer. Binding of the tether strand would 

bring both halves of the DNAzyme into proximity, and cleavage of a chimeric 

substrate molecule within the vesicle would result in an increase in fluorescence. 

  



www.manaraa.com

 93 

6.3 Results and Discussion 
6.3.1 Synthesis of the OPV 

We based the molecular design on an OPV that was previously 

demonstrated to insert into phospholipid bilayers (Figure 6.1A).18 However, the 

optimal structure for our purposes would contain a single alkyl group at either end, 

as opposed to the pair of alkyl groups attached to a nitrogen in the published 

molecule.  So, we decided to replace the nitrogen with an oxygen, the chemistry 

of which would ensure a single alkyl (Figure 6.1B). As it turned out this molecule 

 
 
Figure 6.1 – Molecular Design. A) The previously published molecule19 had two alkyl chains 
at each terminus with a positively charged trimethylamine at each terminus (the counter ion of 
which was a negatively charged iodide).  B) The initial OPV design replaced the nitrogen 
molecules adjacent to the phenyl rings with an oxygen, to create a single alkyl branch. However, 
this molecule would not have been soluble in the aqueous click chemistry buffer. C) To 
overcome this the nitrogens were brought back in, which created four conjugation sites for click 
chemistry. However, the conjugation of oligonucleotides to this molecule did not produce the 
desired product. D) As such, a final molecule was designed, which has two alkyl branches off 
the nitrogen. Conveniently, one of the alkyl groups was an ethyl and the other an six-carbon 
alkyl halide (explained in the next figure). Thus, we achieved the desired single azide at each 
terminus of the final compound. 
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would not have been soluble in the aqueous click buffers. So, we returned to the 

original design, with a nitrogen at either end of the phenyl rings and modified the 

terminal trimethylamines with azides (Figure 6.1C). Synthesis of this molecule and 

the high-performance liquid chromatography spectrum are shown in Appendix III. 

To summarize, we were unable to conjugate an oligonucleotide to each of the 

azides and the molecule did not behave in a predictable fashion. Thus, we adapted 

to molecular design a final time, to achieve a single terminal azide (Figure 6.1D). 

This molecule will be referred to as OPV, or SP-III-175C in the description of the 

synthesis (Figure 6.2). Details of the reaction and the analysis for each compound 

are provided in the text. 

6.3.1.1 Synthesis of Intermediate SP-III-131C 
This procedure was adopted from Garner et al.,18  and began with the 

preparation of (E)-1,2-bis(4-(chloromethyl)phenyl)ethene (SP-III-130C). A 250 mL 

round-bottom flask was placed under an Argon atmosphere and flame dried, to 

which 40 mg of 2nd generation Grubbs catalyst (0.047 mmol, 1 eq.) dissolved in 

anhydrous CH2Cl2 was added and this solution was degassed. Then 1.34 mL (202 

eq., 9.5 mmol) dry 4-vinylbenzyl chloride was added to the reaction flask. 

Figure 6.2 – Synthesis of the Membrane Spanning Azide Functionalized OPV (SP-III-
175C). Shown on the next page. The synthesis begins with the metathesis condensation of 4-
vinylbenzyl chloride to yield SP-III-130C. This is followed by an Arbuzov reaction to yield SP-III-
131C. Synthesis of the intermediate SP-III-169C begins with replacing N-ethyl aniline’s proton 
with a hexanol moiety. At which point, the electron rich aromatic SP-III-167C is converted to 
SP-III-169C via a Vilsmeier-Haack formulation. A Horner-Wadsworth-Emmons reaction yields 
SP-III-172C, by dropwise addition of SP-III-169C to a solution containing SP-III-131C. From 
here the terminal chlorine groups are replaced by iodine with a Finkelstein reaction, which is an 
equilibrium reaction that is pushed to completion because one of the side products, NaCl, is not 
soluble in acetone. Finally, a nucleophilic substitution (SN2) replaces the alkyl iodide with an 
azide, to yield the final compound, SP-III-175C. 
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The solution was slowly refluxed under Argon at 50 °C for 24 hours.                                   

The reaction solution was then allowed to cool slowly and concentrated up to ~10 

mL. The product crystallized out of the reaction solution and the crude (off-white 

needle crystals) was collected via filtration and washed with cold hexanes. 

Following silica gel chromatography using 1:1 dichloromethane:hexane solvent 

system, the pure product was afforded as a white solid 920 mg (35% yield). MP: 

160-163 °C. 1H NMR (400 MHz, CDCl3): δ 7.51 (d, J= 8.4 Hz, 4H), 7.38 (d, J= 7.6 

Hz, 4H), 7.11 (s, 2H), 4.60 (s, 4H). 13C (100 MHz, CDCl3): δ 137.47, 137.03, 

129.16, 128.77, 127.00, 46.20.  

To prepare (E)-4,4’-bis(diethylphosphonatemethyl)stilbene (SP-III-131C), 

500 mg of SP-III-130C (1 eq., 1.8 mmol) and 10 mL of neat triethylphosphite was 

combined in a 100 mL round bottom flask equipped with a reflux condenser. This 

solution was allowed to reflux at 120 °C for 48 hours. Upon completion of the 

reaction, this solution was allowed to cool, and the off-white solid crude product 

was isolated via removal of excess P(OEt)3 by vacuum distillation. Pure SP-III-

131C was obtained as white crystals in 35 % yield by recrystallization from diethyl 

ether. 1H NMR (400 MHz, CDCl3): δ 7.42 (d, J= 7.6 Hz, 4H), 7.25 (d, J= 14 Hz, 

4H), 7.03 (s, 2H), 3.99 (t, (d, J= 7.6 Hz, 8H), 3.13 (d, (d, J= 22 Hz, 4H), 1.22 (t, (d, 

J= 6.8 Hz, 12H). 13C (100 MHz, CDCl3): δ 136.14, 136.10, 131.14, 131.05, 130.27, 

130.20, 128.28, 126.78, 126.75, 62.37, 62.31, 34.41, 33.04, 16.55, 16.49. 

6.3.1.2 Synthesis of Intermediate SP-III-169C 
To synthesize 6-(ethyl(phenyl)amino)hexan-1-ol (SP-III-167C), a procedure 

adopted from Woo et al. was used.21 A mixture of 1.04 mL (8.25 mmol, 1 eq) of N-

ethyl aniline, 1.65 mL (12.4 mmol, 1.5 eq) of 6-chloro-1-hexanol, and 1.7 g (12.4 
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mmol, 1.5 eq) potassium carbonate was heated in 20 mL of n-butanol under reflux 

for 4 days. After cooling, the remaining solids were filtered off, and the solvent was 

removed under reduced pressure to afford the crude product. Purification by silica 

gel chromatography (2:1 ethyl acetate/hexane) yielded 1.25 g (70% yield) of SP-

III-167C as a red-orange thick oil. Keep in refrigerator overnight, use immediately.  

To synthesize 4-((6-chlorohexyl)(ethyl)amino)benzaldehyde (SP-III-169C) 

phosphorus oxychloride (1.5 mL, 16.5 mmol, 2 eq) was added dropwise to 5 mL 

of dry DMF at 0 °C. After 30 min, 1 mL (8.25 mmol, 1 eq) of SP-III-167C in 3 mL 

of DMF was added to the above solution. The resulting mixture was heated to 100 

°C for 3 h. After cooling to room temperature, 50 mL of ice water was poured into 

reaction mixture. The pH of the mixture was adjusted to 7 by addition of saturated 

potassium acetate aqueous solution. The mixture was extracted with 

dichloromethane, and the combined organic phase was washed with water and 

dried over Na2SO4. The solvent was evaporated and the crude product was 

purified by silica gel chromatography (starting with 10% hexane:ethyl acetate and 

increased to 1:1 hexane:ethyl acetate) to afford SP-III-169C (0.35 mg, 33%) as a 

dark yellow oil. 1H NMR (400 MHz, CDCl3): δ 9.67 (s, 1H), 7.69 (d, J= 8 Hz, 2H), 

6.64 (d, J= 8.4 Hz, 2H), 3.54-3.51 (m, 2H), 3.53 (d, J= 7.2 Hz, 2H), 3.35-3.31 (m, 

2H), 1.79-1.76 (m, 2H), 1.64-1.61 (m, 2H), 1.50-1.47 (m, 2H), 1.38-1.36 (m, 2H), 

1.20-1.17 (m, 3H). 13C (100 MHz, CDCl3): δ 190.14, 152.48, 132.41, 124.65, 

110.75, 50.40, 45.29, 44.99, 32.55, 27.35, 26.76, 26.40, 12.32. 
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6.3.1.3 Synthesis of the Final Compound (SP-III-175C) 
Synthesis of the final compound required the intermediate 4,4'-((1E,1'E)-

(((E)-ethene-1,2-diyl)bis(4,1-phenylene))bis(ethene-2,1-diyl))bis(N-(6-

chlorohexyl)-N-ethylaniline) (SP-III-172C), and began by suspending NaH (60 mg, 

1.45 mmol, 60% in oil, 5 eq) in 5 mL anhydrous THF at 0 °C under argon 

atmosphere with stirring. SP-III-131C (140 mg, 0.29 mmol, 1 eq) dissolved in THF 

was added dropwise, followed by addition of SP-III-169C (195 mg, 0.73 mmol, 2.5 

eq) dissolved in THF. The stirring was continued at room temperature overnight. 

The reaction mixture was cooled to 0 °C then water (2 mL) was added dropwise 

under argon with stirring. 2N Hydrochloric acid (5 mL) was added dropwise to the 

reaction mixture then it was extracted with diethyl ether. The organic layers were 

collected, dried (MgSO4), filtered and the solvent removed under reduced pressure 

to give the crude product, which was applied to a silica gel column chromatography 

using 1:1 dichloromethane:hexane solvent system. Fractions containing the 

required product were collected and the solvent removed under reduced pressure. 

Yellowish crystals (50 mg, 25%). 1H NMR (400 MHz, CDCl3): δ 7.54 (s, 8H), 7.47 

(d, J= 4 Hz, 4H), 7.43-7.31 (m, 2H), 7.17-7.10 (m, 4H), 6.98-6.94 (m, 2H), 6.73-

6.69 (m, 4H), 3.64-3.59 (m, 4H), 3.46 (s, 4H), 3.36 (s, 4H), 1.88-1.84 (m, 4H), 1.70-

1.68 (m, 4H), 1.62-1.53 (m, 4H), 1.45 (s, 4H), 1.31-1.23 (m, 6H). 13C (100 MHz, 

CDCl3): δ 149.9, 146.0, 134.7, 128.9, 128.0, 127.8, 126.8, 126.3, 123.6, 111.9, 

53.9, 47.5, 45.2, 32.7, 27.6, 26.9, 26.6, 12.5. 

To synthesize a final intermediate, 4,4'-((1E,1'E)-(((E)-ethene-1,2-

diyl)bis(4,1-phenylene))bis(ethene-2,1-diyl))bis(N-ethyl-N-(6-iodohexyl)aniline) 

(SP-III-173C), under argon atmosphere SP-III-172C (20 mg, 0.03 mmol, 1 eq) 
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dissolved in 5 mL anhydrous acetone was added to a flame dried round bottom 

flask containing sodium iodide (130 mg, 0.85 mmol, 30 eq). The reaction mixture 

was refluxed for 48 hours under argon atmosphere. Upon cooling down to room 

temperature, acetone was evaporated, and the reaction mixture dissolved in 50 

mL CH2Cl2, washed twice with water (to remove excess NaI) and dried over 

MgSO4. A yellow solid was obtained after recrystallization in diethyl ether and used 

immediately for next step without further purification. 

The final compound, 4,4'-((1E,1'E)-(((E)-ethene-1,2-diyl)bis(4,1-

phenylene))bis(ethene-2,1-diyl))bis(N-(6-azidohexyl)-N-ethylaniline) (SP-III-

175C), was synthesized by dissolving SP-III-173C (10 mg, 0.01 mmol, 1 eq) in 2 

mL DMF and then adding sodium azide (22 mg, 0.33, 30 eq). The reaction mixture 

was heated for 2 hours at 60 °C and stirred overnight at room temperature. Water 

was added (50 mL) to extract the product with 35 mL ethyl acetate. The organic 

layer was washed twice with water (25 mL each), dried over MgSO4 and 

concentrated under vacuum. Recrystallization in diethyl ether yielded red solid 

compound, which fluoresced (lEx: 425 

nm, lEm: 525 nm) in chloroform 

(Figure 6.3). 1H NMR (400 MHz, 

CDCl3): δ 7.46 (t, J= 9.6 Hz, 8H), 7.39 

(d, J= 8.4 Hz, 4H), 7.09-7.03 (m, 4H), 

6.88 (d, J= 16.4 Hz, 2H), 6.64 (d, J= 

8.8 Hz, 4H), 3.39 (d, J= 6.8 Hz, 4H)), 

 
Figure 6.3 -  Emission Spectrum of SP-III-
175C in Chloroform. The emission spectrum 
of SP-III-175C, with excitation at 425 nm, shows 
maximal emission at 525 nm.  
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3.28 (t, J= 6.4 Hz, 4H), 1.64-1.59 (m, 8H), 1.43-1.37 (m, 8H), 1.25 (s, 4H), 1.17 (t, 

J= 6.4 Hz, 6H).  

6.3.2 Click Chemistry 
To functionalize the synthesized OPV, SP-III-175C, with oligonucleotides click 

chemistry was used. To begin, SP-III-175C was resuspended in tetrahydrofuran (THF) at 

10 µM. The click chemistry reaction was set up by adding the following reagents in a 

stepwise fashion: Enzyme strand 1 (Enz1) [10 µM], 142.5 µL potassium phosphate buffer 

(200 mM potassium phosphate, pH of 7) to bring the final volume to 500 µL, 200 µL of 

tetrahydrofuran (THF), 50 µL of SP-III-175C [1 µM], 7.5 µL CuSO4 [200 µM] premixed with 

ligand (THPTA) [1 mM], 25 µL of aminoguanidine hydrochloride [10 mM], 25 µL of freshly 

made sodium ascorbate [10 mM]. This reaction mixture was deoxygenated for 10 minutes 

and then stirred for 1 hour in a sealed vial at room temperature. The reaction vial was then 

placed under vacuum to remove THF and water. The product, excess DNA, and reaction 

 
Figure 6.4 – HPLC Spectrum of OPV-Enz1 Products. The initial 10 minutes were run 
with 2% ACN/98% Milli-Q water, to remove excess Enz1 and the click chemistry salts. At 
10 minutes we immediately increased to 20 % ACN, at which point two distinct peaks were 
eluted. We believed the first peak to be OPV-(Enz1)2, and the second to be OPV-(Enz1). 
The spectrum represents the mean of 7 replicates, error bars were not included as they 
obstructed the view of the peaks. 
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salts were resuspended in EDTA [2 mM], to sequester the Copper, and this solution was 

purified by High-Performance Liquid Chromatography (HPLC).  

It was noted that although THF is considered to be biologically inert and 

does not appear to have an effect on the oligonucleotides, it does degrade the 

ATTO647 fluorophore. When a test reaction, lacking both the OPV and THF, was 

run alongside the typical click reaction, lacking only the OPV, we saw a complete 

loss of fluorescence after one week (see Figure A-III.4). 

6.3.3 HPLC for Purification of the Click Chemistry Product (OPV-Enz1) 
To begin HPLC purification we ran 2% acetonitrile (ACN)/98% Milli-Q water 

to remove excess DNA and the click chemistry salts. After ten minutes we 

immediately increased to 20 % ACN/80% water, at which point two distinct peaks 

were eluted (Figure 6.4). We believed the initial peak, being more polar, to be the 

OPV with both azide group functionalized with Enz1 (OPV-(Enz1)2), while second 

peak was the OPV with only one Enz1 conjugated (OPV-(Enz1)). However, this 

hypothesis was disproved when mass spectrometry analysis (Figure 6.5) showed 

the major component to have a molecular weight of 6,801.4 and 6.801.5 D 

 
Figure 6.5 – Mass Spectrometry Analysis of HPLC Fractions. A) First HPLC fraction (12.5 
minutes). B) Second HPLC fraction (15 minutes). The molecular weight of Enz1, without a 
fluorescent tag, is 6,801.6 D, which is the major component for both the first and second HPLC 
fractions according to mass spectrometry analysis. 
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respectively, which almost exactly matches the molecular weight of Enz1 (6,801.6 

D), without a fluorescent tag, which was used in the conjugation. The other peaks 

were analyzed to determine if dividing by the molecular weight of SP-III-175C 

resulted in an integer, which could indicate formation of an OPV multimer, 

however, none of the peaks indicated such a formation. The peaks were also 

analyzed to determine if various reaction components were associating with the 

oligonucleotides or SP-III-175C, again no peak indicated such an association.  

6.3.4 Incorporation of the OPV-Enz1 into Lipid Bilayers 
 The next steps will be to functionalize the same OPV with the second half 

of the split DNAzyme. At which point, we will have two separate molecules, both 

of which will be incorporated at 0.5 mol%, for a total of 1 mol%, into a DOPC lipid 

bilayer (Figure 6.0). This bilayer will also contain a PEGylated lipid, which will 

provide a cushion between the bilayer and a silica microsphere (SiMS).22,23 After 

extruding the DOPC-PEG-(OPV-(Enz1)2)-(OPV-(Enz2)2) vesicles, cushioned 

supported lipid bilayers will be formed on 10 µm mesoporous SiMSs. This will allow 

analysis with flow cytometry.24,25 



www.manaraa.com

 103 

6.3.5 Split Enzyme Reactions in Lipid Bilayers 
 To design the split enzyme strands we used variant 1, from Table S2 of the 

Mokany et al. paper,20 for the conserved catalytic core (see Appendix IV-T1 for 

strand sequences). We then used binding arms complementary to the U2 

Substrate, which was previously used in our lab. To initiate signal transduction 

across the lipid bilayer a nucleic acid-based input strand will be added to the 

solution containing SiMS cushioned supported lipid bilayers. This tether strand will 

be designed to fully hybridize Enz1 and Enz2, thereby bringing the two OPV 

molecules into close proximity at the outer leaflet of the lipid bilayer. Consequently, 

the two halved of the split DNAzyme will be in close proximity within the bilayer as 

well, at which point the DNAzyme will be fully activated and will begin to cleave the 

chimeric U2 Substrate molecule (Figure 6.6). This substrate molecule will have 

both a fluorophore and a 

corresponding quencher 

molecule and will not emit 

photons before cleavage. After 

cleavage the fluorophore and 

quencher will move apart, and 

fluorescence will increase within 

the bilayer. 

6.3.6 Conclusion and Future 
Directions 

Chapter 7 will present a 

body of work exploring the use 

of steroids, which passively 

 
Figure 6.6 – Activated Split Enzyme Structure. 
Once the tether strand has activated the split 
DNAzyme, the two halves will be brought into close 
proximity within the bilayer and the DNAzyme will be 
fully activated. 
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diffuse across lipid bilayers, as another means of transmembrane signal 

transduction. The use of polymersomes14 should also be considered, as lipid 

stability (discussed in Chapter 5) continues to prove problematic. Additionally, 

polymersomes could allow for the use of a polymer with functional groups to which 

DNA can be conjugated, should the conjugation of oligonucleotides to the SP-III-

175C prove unsuccessful using click chemistry.  

6.4 Materials and Methods 
6.4.1 Materials 

For the synthesis of SP-III-163C and SP-III-175C, all solvents and reagents 

were obtained from Sigma–Aldrich (St. Louis, MO) and used without further 

purification. For the click chemistry reaction, all reagents were purchased from 

Sigma-Aldrich. All oligonucleotides were purchased from Integrated DNA 

Technologies (IDT, Coralville, IA). IDT purified unmodified strands by standard 

desalting, and the fluorophore/quencher tagged strands were purified by high 

performance liquid chromatography. Lipids were purchased from Avanti Polar 

Lipids (Alabaster, AL). 

6.4.2 Synthesis  
Analytical thin-layer chromatography (TLC) was performed on aluminum 

plates pre-coated with silica gel, also obtained from Sigma–Aldrich. Column 

chromatography was carried out on Merck 938S silica gel. Proton NMR spectra 

were recorded with a Varian 400 MHz NMR spectrometer. Spectra were 

referenced to the residual solvent peak, and chemical shifts are expressed in parts 

per million (ppm) from the internal reference peak. All compounds described were 

of >95% purity. Purity was confirmed by analytical LC/MS recorded with a 

Shimadzu system. Elution started with water (95 %, +0.1% formic acid)/ACN (5 %, 
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+0.1% formic acid) and ended with ACN (95 %, 0.1% formic acid)/water (5 %, 0.1% 

formic acid) and used a linear gradient at a flow rate of 0.2 mL per minute. The 

molecular ions [M]+, with intensities in parentheses, are given, followed by peaks 

corresponding to major fragment losses. Melting points were measured with a 

MEL-TEMP II melting point apparatus and are reported uncorrected.  

6.4.3 High-Performance Liquid Chromatography  
Reverse phase HPLC was performed on an Agilent 1100 Series, with a 

Zorbax ODS, 4.6 x 250 mm, 5 µm liquid chromatography column.  HPLC analysis 

was run at room temperature, at 1 mL per minute, with elution being monitored by 

UV-Vis absorbance at 260 nm. The following gradient was used: 0-10 minutes 2% 

ACN/98% Milli-Q purified water; 10-20 minutes 20% ACN/80% water; 20-30 

minutes 50% ACN/50% water; 30-40 minutes 98 %/2% water; 40-60 minutes 2% 

ACN/98% water. 

6.4.4 Uv-Vis 
UV/Vis measurements were taken on a PerkinElmer Lambda 35 UV/Vis 

Spectrometer in quartz cuvettes.  

6.4.5 Mass Spectroscopy 
Mass spectrometry was completed by Novatia, LLC. 
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CHAPTER 7 - PHYSICAL ISOLATION AND PROTECTION OF 
MOLECULAR COMPUTING ELEMENTS IN GIANT UNILAMELLAR 
VESICLES 
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7.1 Abstract 
The physical isolation of molecular 

computing elements has the potential 

to increase complexity, by allowing 

the reuse of standardized 

components, and to protect nucleic 

acid components from environmental 

degradation. However, once elements have been compartmentalized, methods for 

communicating into these compartments are needed. We report the encapsulation 

of steroid-responsive DNA aptamers within giant unilamellar vesicles (GUVs) that 

are permeable to steroid inputs. Monodisperse GUVs were loaded with aptamers 

using a high-throughput microfluidic platform. We demonstrate the target-specific 

activation of individual aptamers within the GUVs and then load two non-interfering 

aptamers into the same GUV and demonstrate specific responses to all possible 

combinations of the two input steroids. Crucially, the GUVs prevent degradation of 

 
Figure 7.0 – Abstract Figure 
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DNA components by nucleases, providing a mechanism for deploying nucleic acid 

components in vivo. Importantly, our compartments also prevent crosstalk 

between complementary strands in separate GUVs, providing a method for 

multiplexing potentially cross-reacting components. Thus, we provide a 

mechanism for spatially organizing computing elements, which increases 

modularity by allowing standardized components to be reused.  

7.2 Introduction 
 Living systems comprise highly organized sets of compartments and this 

structure is directly tied to survival and reproduction. Each compartment contains 

highly specialized molecular circuitry, and communication between compartments 

is essential.  From organelles to cells to tissues to organisms, the flow of 

information is precisely controlled and correct function relies on the spatial 

organization of biomolecular circuits that would otherwise interact in promiscuous 

ways.1  

The field of molecular computation uses logic gates, built using biological 

polymers, to make decisions at the nanoscale. DNA, thanks to its highly 

predictable thermodynamic and mechanical properties, is an ideal building 

material for designing dynamic molecular systems, and Watson-Crick base pairing 

enables rapid design of molecular interactions. However, most DNA-based 

systems built up to now have been run in well-mixed dilute saline solutions, which 

lack spatial organization.2-5 Spurious interactions, known as leakage, occur when 

output signals are generated in the absence of activating input signals, and lead 

to reduced signal to noise ratios. In solution phase DNA systems, efforts to 

decrease leakage include careful sequence design, thresholding,6 the 
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incorporation of mismatches to prevent the formation of undesirable complexes,7,8 

structural designs that protect sequences vulnerable to leakage,4,5 and domain-

level motifs that prevent leakage by increasing the number of spurious events 

required for leakage to occur.9 Efforts to decrease leakage by restricting computing 

elements to DNA origami scaffolds10-14 have also been made. However, without 

full physical encapsulation, some leakage is still observed. Total encapsulation of 

computing elements using lipid bilayers, analogous to cell membranes, decreases 

spurious interactions even further, and allows the use of standardized components 

in distinct physical compartments. Lipid bilayers form the majority of compartments 

in cellular systems, including the cell membrane, the nuclear envelope and the 

mitochondrial membranes. Naturally occurring biological membranes are primarily 

composed of phospholipids, which self-assemble into fluid structures. In order to 

use lipid bilayers to physically isolate DNA-based molecular circuits, systems must 

be designed to allow signal transduction into the compartments and this requires 

an input layer that senses signals capable of crossing lipid bilayers. 

In biological systems, signal transduction is achieved via integral membrane 

proteins or via passive diffusion (i.e., permeation of small moderately polar or non-

polar molecules directly across the cell membrane). Steroids are hydrophobic 

small molecules, that passively diffuse across lipid bilayers,15 making them good 

candidates for signal transduction into giant unilamellar vesicles (GUVs). We 

recently reported a set of ssDNA aptamers that specifically bind steroid inputs, and 

can be monitored with fluorescent microscopy.16 Thus, aptamers that specifically 

bind steroid targets are ideal for use in the input layer of DNA-based biosensors 
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encapsulated within lipid bilayers. Crucially, they provide a method for signaling 

across the bilayer without physically disrupting it, which would directly expose the 

components within to the external chemical environment.  

The cellular environment is tightly controlled and has many protection 

mechanisms, such as nucleases that degrade foreign and unused nucleic acids. 

A key goal of nucleic acid nanotechnology is to deploy engineered systems in vivo 

for autonomous diagnostic, and 

potentially therapeutic, 

applications.17 However, for 

engineered nucleic acid systems to 

function reliably in vivo they must be 

stable in the presence of 

nucleases.18-20 This requires total 

physical isolation of the computing 

elements within a compartment that 

is impermeable to the nucleases that 

would otherwise degrade the nucleic 

acids. Thus, our GUV system offers 

a route to implement nucleic acid-

based biosensors that are robust to 

degradation and can thus operate in 

the intracellular environment for 

extended periods of time. 

 
Figure 7.1 - The Microfluidic System. A)  For the 
initial experiments GUVs were loaded with 10 wt% 
PVA in PBS, pH of 7.4, and a fluorescently tagged 
oligonucleotide [500 nM], to confirm microfluidic 
chip function and membrane stability in the 
presence of these compounds. The continuous 
phase consisted of 10 wt% PVA in PBS, pH 7.4, 
and the oil phase consisted of DOPC [5 mg/mL] in 
36 vol% chloroform and 64 vol% hexane. See 
Movie S1 for video of device operation. B) The 
GUVs were then images on a Zeiss LSM 800 
Airyscan confocal microscope (488/520 nm).  
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7.3 Results and Discussion 
7.3.1 Microfluidics to Generate Monodispersed GUVs 

We used a previously reported glass capillary microfluidic platform21 to 

generate monodispersed GUVs, loaded with a range of aptamer cargos. Various 

aptamer cargos could easily be loaded, because this system allows all phases 

(inner aqueous, continuous and oil) to be modulated independently (Figure 7.1A). 

In addition, this system requires the use of a polymer, poly(vinyl alcohol) (PVA) in 

this case, to increase the viscosity and stabilize the lipid headgroups. Injection 

pumps are used for each of the phases, allowing the rates to be modulated 

independently. Generally speaking, the continuous phase is run at the highest flow 

rate. This introduces shear forces that pinch the lipid stream, thereby forming 

vesicles. The rates of the inner aqueous and oil phases effect the shell thickness, 

which must be <500 nm to achieve stable GUVs.22 Directly after fabrication, the 

GUVs are incubated in a collection solution, at which point a good solvent 

(chloroform in this case) moves into solution, leaving behind a bad solvent 

(hexanes in this case) which gradually dewets allowing the lipids to assemble into 

a bilayer with an expected thickness of 5 nm. If this dewetting process happens 

too quickly, the lipids will not organize into bilayers and the GUVs will burst. 

Saturating the collection solution with the good solvent helps to slow the dewetting 

process. The collection container is also essential for stability, as any hydrophobic 

surface will disrupt the GUVs, and we exclusively used glass containers for 

collection.  

To begin, we introduced salts and a buffer to the aqueous components, as 

the previous system consisted of PVA (MW 13,000-23,000) in water. Nucleic acids 
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require salt for hybridization, and we 

wanted to maintain a physiologically 

relevant pH, thus phosphate 

buffered saline (PBS) was selected 

and PVA was dissolved into the 

PBS buffer at 10 wt%. This solution 

was used for both the inner 

aqueous phase and the continuous 

phase (Figure 7.1A, Movie S1 

shows the device in operation). We 

also introduced a fluorescein (FAM) 

labeled oligonucleotide [500 nM] 

into the inner aqueous phase and 

generated GUVs that were imaged 

on a Zeiss LSM 800 confocal 

microscope (Figure 7.1B). From 

here various components could be loaded into the GUVs that were collected in a 

solution containing 5 wt% PVA in PBS, the higher PVA percentage within the 

GUVs caused them to settle in this solution. As previously described, this collection 

solution was saturated with chloroform to slow the dewetting process.  

7.3.2 The DOGS.2 and CSS.1 Aptamer/Quenchers 
Two previously reported, aptamer-ligand sets were selected: the DOGS.2 

aptamer that binds deoxycorticosterone (DC) with high selectivity and the CSS.1 

that aptamer binds cortisol (CS).16 The published solubility for the DC steroid is 

 
Figure 7.2 - Aptamer Structure and Response 
to Steroid Inputs. A) The DOGS.2 aptamer is 
labeled with fluorescein (FAM) and has a 
complementary quencher strand labeled with an 
Iowa Black FQ quencher. This aptamer/quencher 
(A/Q) pair is activated by the DC steroid, which 
causes a conformational change, ultimately 
displacing the quencher strand, resulting in an 
increase in FAM fluorescence. The capitalized 
bases represent the conserved target binding 
region of the aptamer, while the lower-case bases 
represent the stem region of the aptamer 
sequence and the complementary quencher 
strand. B) The CSS.1 aptamer is labeled with 
ATTO647 and has a complementary strand 
labeled with the Iowa Black RQ quencher. This 
A/Q pair is activated by the CS steroid. 
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100 µg/mL (302.6 µM) in ethanol, however, solubility at 500 µM in ethanol was 

achieved. Neither aptamer-ligand set is activated by the other, ensuring little to no 

non-specific activation between sets. The two aptamers were labeled with 

spectrally distinct fluorophores: DOGS.2 with FAM and CSS.1 with ATTO647. 

Each aptamer was hybridized to a partially complementary quencher strand 

labeled with an Iowa Black quencher specific to the fluorophore, forming an 

aptamer/quencher (A/Q) pair (Figure 7.2). Fluorescence resonance energy 

transfer (FRET) between the fluorophore and the Iowa Black quencher results in 

low fluorescence in the absence of target. Binding of the corresponding steroid 

target causes the aptamer strand to change conformation, which displaces the 

 
Figure 7.3 - GUV Response in the Presence of Various Steroid Inputs. A) DOGS.2 aptamer 
[500 nM]/quencher [550 nM] in the absence of input. B) DOGS.2 A/Q plus the non-specific CS 
steroid [500 µM]. C) DOGS.2 A/Q plus the specific DC steroid [500 µM]. Images A-C are 
composites of the FAM channel and a DIC image. D) CSS.1 aptamer [500 nM]/quencher [550 
nM] in the absence of input. E)  CSS.1 A/Q plus the specific CS steroid [500 µM]. F)  CSS.1 
A/Q in the presence of the non-specific DC steroid [500 µM]. Images D-F are a composite of 
the ATTO647 channel and a DIC image. 
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quencher strand. This leads to loss of FRET and hence increased fluorescence. 

We redesigned the stem region, which is not part of the conserved target binding 

aptamer sequence, of the published sequences so that the two aptamer/quencher 

pairs would not cross react when placed in the same GUV. 

7.3.3 Responses of A/Q Pairs Encapsulated within GUVs 
Aptamer function in 10 wt% PVA was first tested in solution, see Methods 

and Supporting Information for details. Having fully characterized the behaviors of 

both the DOGS.2 and the CSS.1 aptamers in the PVA solution, each A/Q pair was 

loaded into GUVs individually using our microfluidic platform. The loaded GUVs 

were incubated at room 

temperature for an hour, to allow 

dewetting of the oil phase solvents, 

at which point each steroid was 

added to a separate well containing 

~100 GUVs loaded with one of the 

A/Q pairs and incubated at room 

temperature for one hour. Figure 

7.3A shows confocal imagery of a 

GUV loaded with the DOGS.2 A/Q 

pair in the absence of steroid. 

Figure 7.3B shows the addition of 

the non-specific CS steroid [500 

µM], and Figure 7.3C shows the 

addition of the target DC steroid 

 
Figure 7.4 - Quantification of Aptamer 
Activation in GUVs, with Error Analysis. Five 
replicates (error bars are 95% CI) for the DOGS.2 
and CSS.1 A/Q pairs. Both steroids were added 
at 500 µM. The FAM channel (488/520 nm) and 
ATTO647 channel (647/662 nm) values were 
calculated using an ROI that was identical for all 
replicates. The plots were normalized the mean of 
the A/Q pair as 0, and the mean of the target 
response as 1. 
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[500 µM]. The grayscales were standardized across all samples. Figure 7.3D-F 

shows the same for the CSS.1 A/Q pair, however the slower activation of the 

CSS.1 A/Q pair required an incubation period of 3 hours. As the binding kinetics 

between both aptamers and their respective targets are relatively equivalent in 

solution, we believe the slower activation may be related to the permeability of the 

CS steroid across the DOPC lipid bilayer. Figure 7.4 show the results of a 

quantitative analysis of the intensity for 5 replicate GUVs. These results confirmed 

permeability of the steroid targets across the lipid bilayer and demonstrates signal 

 
Figure 7.5 - Responses of Both Aptamers within a Single GUV. A) Solution phase 
experiment with both the DOGS.2 and CSS.1 A/Q present. Both aptamer strands are at 50 nM, 
and both quenchers at 55 nM. Both steroids were added at 150 µM, with a total steroid 
concentration of 300 µM for the +DC/CS steroids samples. B) Both the DOGS.2 and CSS.1 in 
the same GUV, in the presence of DC and CS steroids, and a combination of both steroid inputs. 
C) Composite image of both the FAM (488/520 nm) and the ATTO 647 (647/662 nm) channels, 
in the absence of all inputs. D) The same as C with the CS steroid [500 µM]. E) The same as C 
with the DC steroid [500 µM]. F) The same as C, with both steroids each at 500 µM, for a total 
steroid concentration of 1 mM.  
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transduction into a physically isolated membrane compartment using steroids. We 

next tested the behavior with both the DOGS.2 and CSS.1 A/Q pairs in the same 

solution. Figure 7.5A, shows the solution phase response of each aptamer in the 

presence of the DC steroid, the CS steroid and a combination of the DC and CS 

steroids. Having confirmed the function and specificity of the aptamers together in 

solution we loaded both A/Q pairs into the same GUV.  Figure 7.5B shows the 

quantification of five replicate GUVs, an example of each shown in Figure 7.5C-F. 

As seen in solution, these aptamer-ligand sets are non-interfering and activation 

within the GUV is comparable to the experiments that contained individual A/Q 

pairs. 

 
Figure 7.6 - Making Use of Separate Compartments. A) Two populations of GUVs loaded 
with individual aptamers, in same solution. In the absence of steroid inputs. B)  Same as A, in 
the presence of CS steroid [500 µM]. C) Same as A, in the presence of DC steroid [500 µM]. D) 
Same as A, in the presence of both CS and DC steroids. E) Analysis of four replicates, error 
bars represent 95% CI, on the FAM (488/520 nm) ATTO647 (647/662 nm) channels.  
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To make full use of the compartments, we created a solution with multiple 

populations of GUVs. Each GUV was loaded with the DOGS.2 A/Q pair or the 

CSS.1 A/Q pair. Figure 7.6A shows the two populations in solution, in the absence 

of steroid targets and although the aptamers are quenched it is still possible to 

determine which GUVs contain the FAM labeled DOGS.2 A/Q pair and which 

contain the ATTO647 labeled CSS.2 A/Q pair. In Figure 7.6B, with the CS steroid 

[500 µM] added, we only see increased fluorescence in the GUVs loaded with 

CSS.1. While in Figure 7.6C, with the addition of the DC steroid [500 µM], only the 

GUVs loaded with DOGS.2 brighten. Finally, in Figure 7.6D, with the addition of 

both the CS and the DC steroid targets, the fluorescence for all GUVs increases. 

Figure 7.6E shows the quantification of five replicate GUVs for each sample, 

further confirming the specificity of our aptamer-ligand sets. For this experiment 

we used non-interfering sequences, however, the same experiment would work 

very well if multiple aptamers, each with a standardized stem,16 were loaded into 

separate GUVs in a single tube assay. Although others have used lipid bilayers to 

compartmentalization DNA-base molecular computing elements,23-25 our high-

throughput system provides a simple means of creating many compartments and 

does not require pores for signal transduction,26 thereby maintaining a physical 

separation between the internal and external solutions.  

7.3.4 Protection from Nucleases and Complementary Strands 
To function in vivo, nucleic acid based molecular computing systems must 

be protected from nucleases. In a solution that lacks protection mechanisms, 

nucleic acids will be degraded by nucleases. As such, if a nuclease can access an 

A/Q pair it will completely degrade the individual strands and the fluorophore and 



www.manaraa.com

 118 

quencher will no longer be held in close proximity, resulting in an increase in 

fluorescence (Figure 7.7A). To test this hypothesis, we added DNAse I to the 

DOGS.2 A/Q pair in our 10 wt% PVA solution. DNAse I requires magnesium ions, 

and so we added Mg2+ [5 mM] to our solution. Figure 7.7B shows the anticipated 

increase in fluorescence in the presence of functional DNAse I, which is equivalent 

to that caused by the addition of the DC steroid target. To confirm that this was 

due to degradation by the DNAse and not via some other mechanism (e.g., 

aptamer binding to the nuclease protein itself), we exposed the A/Q pair to 

denatured DNAse (20 min at 95 oC) and observed a negligible increase in signal.  

To demonstrate the ability of GUVs to protect DNA components from 

nucleases (Figure 7.7C), we loaded GUVs with the DOGS.2 A/Q pair, including 

Mg2+ [5 mM] in all aqueous solutions (the inner aqueous, continuous and 

collections solutions) for this experiment. We then added denatured DNAse I, 

functional DNAse I, functional DNAse I and the DC steroid target, and as an 

absolute positive control the DC steroid target on its own to GUV solutions (Figure 

7.7D). We saw full protection from DNAse I when our A/Q pair was encapsulated 

in a GUV; the response was equivalent to the denatured DNAse I sample indicating 

full protection. We interpret this as the GUV membrane providing a physical barrier 

that prevents the DNAse from reaching the A/Q inside. To confirm DC steroid 

activation in the presence of the fully functional DNAse, we exposed the GUVs to 

both the DNAse and the DC steroid for 1 hour and saw an increase in fluorescence. 
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However, the increase in fluorescence for DC on its own was stronger and more 

consistent, possibly due to sequestration of the steroid by the DNAse. 

 
Figure 7.7 - Protection from Nucleases and Complementary Strands. A) Schematic 
illustrating solution phase experiments, with either the addition of DNAse I or a strand that is fully 
complementary to the DOGS.2 aptamer (A*). In this case all reactants are free to interact – 
DNAse I will degrade nucleic acids and complementary strands will for duplexes. B) Solution 
phase experiment with the DOGS.2 aptamer [100 nM]/quencher [110 nM] in the presence of 
denatured DNAse I [10 µM], functional DNAse I [10 µM], the DC steroid target [500 µM], in the 
presence of Mg2+. On the same bar chart we have DOGS.2 aptamer [500 nM]/quencher [550 
nM]  in the presence of A* [600 nM], and the DC steroid target [500 µM] in the absence of Mg2+. 
C) Schematic illustrating GUV experiments, where the lipid bilayer prevents both DNAse I and 
A* from interacting with the DOGS.2 A/Q pair. As illustrated in both A and C, the DNAse I 
experiments require 5 mM Mg2+, which was added into all phases for the GUV experiment. The 
A* experiments do not have Mg2+. Error bars represent 95% CI for five replicates. D) GUV 
experiment, with the DOGS.2 aptamer [500 nM]/quencher [550 nM] loaded into a GUV with 5 
mM Mg2+ in all phases. The same denatured DNAse was added as a second negative control. 
For this experiment we added functional DNAse in the presence of the DC steroid target [500 
µM]. As a true positive control, the DC steroid target was added at 500 µM. Error bars represent 
95% CI for five replicates.  
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Another key advantage of physically isolating molecular circuits is that 

nucleotide sequences can be reused in different parts of the circuit without 

crosstalk. 12 To demonstrate that GUVs can protect internal components from 

undesired activation by partially complementary sequences, we introduced a 

strand (A*) that is fully complementary to the DOGS.2 aptamer strand. Our 

hypothesis was that the A* strand would interact with the A/Q pair when in bulk 

solution (Figure 7.7A) but would be prevented from doing so by a GUV membrane 

(Figure 7.7C). Our solution phase experiment studying the interactions of the 

DOGS.2 aptamer [500 nM]/quencher [550 nM] with the complementary A* strand 

[600 nM] (Figure 7.7B) shows activation of the fluorescent response, albeit slower 

and weaker activation than for the DC steroid input. This could be due to a kinetic 

trap that prevents the formation of the A/A* complex, which is predicted to be the 

most thermodynamically stable conformation. We demonstrated protection of the 

aptamers against the complementary strand by loading GUVs with the DOGS.2 

A/Q and exposed them to an external solution containing A* (Figure 7.7D). The 

lack of response when A* is present in the external solution confirms protection of 

the A/Q pair from A* strand by the GUV and indicates that standardized strands 

(which in bulk solution would cause leakage) can be used in a solution containing 

separate compartments. 

7.4 Conclusions 
 Using a previously reported high throughput microfluidic platform, DNA 

aptamers were encapsulated within GUVs. Initially, individual aptamers were 

encapsulated within GUVs. We then encapsulated two aptamers within the same 

GUV and finally we monitored behaviors with a mixture of two GUV populations, 
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each with a single A/Q pair, within the same solution. These aptamer-based 

molecular computing elements were activated by steroid inputs that passively 

diffused across a DOPC lipid bilayer, demonstrating signal transduction across 

lipid bilayers using steroids. To demonstrate spatial localization of sensing 

responses, we combined two populations of GUVs containing distinct aptamers 

and demonstrated target-specific activation in the presence of individual and 

multiple steroid inputs. Thus, our work introduces a mechanism for running 

standardized components in single-tube assay. Protecting DNA-based computing 

elements from nucleases that are found in living systems is an important problem, 

and we have shown that our system prevents degradation of encapsulated DNA 

components by DNAses. This system was also shown to decrease spurious 

interactions, by preventing fully complementary strands from meeting, and hence 

interacting with, the encapsulated A/Q pairs. 

A fruitful avenue for future work will be to scale up the complexity of the 

computation performed within the compartments, in which the aptamer binding 

reactions monitored here would be just the first step of a multi-layer molecular 

computing cascade.5 Our group previously demonstrated the use of an aptamer 

as the input layer of a cascade.7 Furthermore, developing methods for signaling 

results back out of a compartment would enable the development of modular 

computational cascades assembled from reusable, vesicle-encapsulated 

subroutines. 

  



www.manaraa.com

 122 

7.5 Materials and Methods 
7.5.1 Materials 

All oligonucleotides were purchased from Integrated DNA Technologies 

(IDT, Coralville, IA). IDT purified unmodified strands by standard desalting, and the 

fluorophore/quencher tagged strands were purified by high performance liquid 

chromatography. Lipids were purchased from Avanti Polar Lipids (Alabaster, AL). 

Chloroform and hexanes were purchased from OmniSolv (Billerica, MA). PVA, 

PBS, MgCl2, cortisol, deoxycorticosterone and DNAse I were purchased from 

Sigma Aldrich (St. Louis, MO). Square glass capillaries (OD 1.5 mm, ID 1.05 mm) 

were purchased from Atlantic International Technology (Rockaway, NJ). Round 

glass capillaries (OD 1.0 mm, ID 0.58 mm) were purchased from World Precision 

Instruments (Sarasota, FL). Devcon 5-minute epoxy must be used for device 

fabrication and was purchased from Scientific Commodities Inc. (Lake Havasu 

City, AZ). 

7.5.2 Microfluidics to Generate GUVs 
A micropipette puller (P-97, Sutter Instrument, Inc.) was used, at a heat 

setting of 500, a pull strength of 4, a velocity of 4 and a time setting of 150 for the 

injection, and collection capillaries. For the inner aqueous capillary, a heat setting 

of 600, a pull strength of 50, a velocity of 50 and a time setting of 150 was used. 

After pulling the capillaries a microforge (MF-830, Narishige) was used to 

determine ID dimensions, which were then adjusted use 2500 grit sandpaper from 

Home Depot. All PVA solutions were filtered with 5 µm filters (EMD Millipore) prior 

to use. The trimethoxy(octadecyl) silane was distilled prior to use, and devices 

were remade after each use to ensure efficient silane coats. The oil phase 
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consisted of pure 1,2-dioleyl-sn-glycero-3-phosphocholine (DOPC) at 5 mg/mL in 

a mixture of 36 vol% chloroform and 64 vol% hexane.  To form ultrathin GUVs that 

were stable for up to 5 hours, we used a flow rate of 2500 µL/hr for both the inner 

aqueous and the oil phases and 10,000 µL/hr for the continuous phase. 

7.5.3 Fluorimetry 
Initial experiments were run to determine the optimal amount of quencher 

strand required for full quenching and strong ligand-dependent activation (see 

Supporting Information Figure A-IV.1). This was found to be 10 mol% above the 

aptamer strand concentration. To achieve consistent and maximal quenching, 

aptamer and quencher strands were incubated at room temperature for 15 minutes 

in a PBS solution and then diluted to the desired concentration in 10 wt% PVA in 

PBS (Supporting Information Figure A-IV.2). For the solution phase experiments 

the prehybridized aptamer [50 nM]/quencher [55 nM] complexes were added to 10 

wt% PVA solution.  Each steroid [150 µM] was added and the solution was 

incubated at room temperature for one hour (Figure A-IV.3). Each A/Q pair was 

activated by its ligand (i.e. the DOGS.2 A/Q pair was activated by the DC steroid 

target) and we saw a minimal increase in fluorescence for the non-specific steroid 

(i.e. the DOGS.2 A/Q pair in the presence of CS steroid). This non-specific 

activation was minimal when compared to the target steroid and was considered 

a negative response. 

The DOGS.2 fluorimetry experiments were performed at room temperature 

(25 0C) on a Spectramax M2e fluorescent plate reader (Molecular Devices) in a 

200 µL reaction volume (FAM: lex=492 nm, lem=518 nm). The CSS.1 fluorimetry 
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experiments were performed on a Photon Technology International fluorimeter 

(ATTO647: lex= 647 nm, lem= 662 nm). 

7.5.4 Confocal Fluorescent Microscopy 
All confocal experiments were performed on a Zeiss LSM800 confocal 

microscope, at the University of New Mexico’s Cancer Center. Laser power for the 

FAM (lex=488 nm, lem=520 nm) channel was held constant at 1%, with master 

gain set to 800 V. Laser power for the ATTO647 (lex= 647 nm, lem= 662 nm) 

channel was held constant at 4%, with master gain set to 600 V. The pinhole for 

all experiments was set to 64 µm. A 40x oil emersion objective was used, with a 

scan speed of 6, and 0.5x magnification for individual GUVs. A 10x objective, with 

a scan speed of 6, was used when imaging multiple GUVs. A frame size of 

2048x2048 was used, which corresponds to a pixel size of 0.16 µm with the above 

settings. 

7.6 Associated Content 
The Supporting Information is presented in Appendix IV. The Supporting 

Information document includes all supplementary figures as described in the main 

text. Movie A-IV.1 – To show device in operation. 
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CHAPTER 8 – CONCLUSIONS AND FUTURE DIRECTIONS  
 

8.1 Conclusions 
 The work presented here represents initial steps towards developing easily 

adaptable, highly selective and rapid diagnostics tools. The first set of experiments 

presented solution phase TMSD and DNAzyme reactions, capable of dsDNA 

detection. Importantly, when multiple regions on the plasmid model were targeted 

an increase in response was seen. The implications of this will be further discussed 

in the next section. In the next set of experiments, a DENV diagnostic was 

demonstrated using TMSD reactions on multiplexed µSLBs. The limit of detection 

(LOD) for this system was 3 nM. Methods for further decreasing LODs will be 

proposed in the next section. In addition, buffer conditions were optimized to allow 

DNAzyme reactions to be run on zwitterionic lipid surfaces. This body of work, 

provides valuable methods for interfacing DNA and lipid bilayers. The design of a 

molecule capable of DNA-based transmembrane signal transduction was then 

presented. This molecule would allow communication into and potentially back out 

of compartments. Finally, DNA aptamers were encapsulated with GUVs using a 

glass capillary microfluidic platform. Signals were transduced across the bilayers 

using steroids. Importantly, we demonstrated protection from nucleases and from 

strands that would cause interference in a well-mixed solution. Preliminary 

experiments for increasing the complexity of these GUV compartments are 

presented in the next section.  
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8.2 Future Directions 
 Efforts to decrease the limit of 

detection using isothermal 

amplification techniques have proven 

difficult. As such, future efforts should 

focus on PCR readouts, as methods 

of analysis for PCR product do not 

currently use DNA-based molecular 

logic. Additionally, targeting multiple 

regions on a genome, and in the case 

of dsDNA genomes both halves of the 

genome should be targeted (Figure 

8.1A).  Figure 3.5 presented very 

promising data in this regard, 

suggesting that if we target multiple 

regions we can increase our response 

(Figure 8.1B) to levels comparable 

with simple ssDNA responses. This 

increase in response should translate 

to a decrease in LOD values (Figure 

8.1C). The complexity of DNA-based 

molecular computation has the 

potential to contribute significant 

benefits to PCR readout and 

 
Figure 8.1 – Targeting Multiple Regions on 
Both Halves of a Genome to Decrease Limits 
of Detection. A) Logic gates targeting multiple 
regions on both halves of a genome. B) 
Hypothetical plot, showing an increase in 
response as the number of targets increases. 
The data presented in Figure 3.5 suggests that 
this is possible.  C) Hypothetical plot, showing a 
decrease in the limit of detection. 
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diagnostics. Still, high throughput methods of analysis, such as flow cytometry, are 

needed. 

One of the most powerful capabilities of flow cytometry is the ability to 

monitor multiplexed bead sets. Figure 8.2, presents a hypothetical method for 

detecting multiple regions on a genome, while simultaneously testing for other 

genomes.  The multiplexed bead sets presented in Chapter 4 were achieved using 

lipid bilayers. However, as mentioned in Chapter 4, polystyrene beads are 

frequently used and much larger multiplexes can be achieved using these systems 

(Figure 8.2A). If TMSD gates were attached directly to the polystyrene beads 

multiple regions of a genome could be targeted using YES gates (Figure 8.2B), 

and NOT gates could be designed to target other genomes (Figure 8.2C). Analysis 

with flow cytometry could allow a limited number of fluorophores to be used and 

would produce highly qualitative and high dimensional data sets. This may seem 

 
Figure 8.2 – Fluorescently Indexed Polystyrene Beads with both YES and NOT gates. A) A 
multiplex using fluorescently indexed polystyrene beads, with >9 populations (the largest multiplex 
achieved in Chapter 4 was 9 populations). Each bead set can be used to target multiple regions on 
DENV-1, for instance, using YES gates. While the other bead sets will have NOT gates, with 
sequences that would target the other DENV-2 - DENV-4.  



www.manaraa.com

 130 

far-fetched but think of the DNA microarrays used for next generation sequencing, 

then put those arrays on polystyrene beads and analyze with flow cytometry.  

Figure 8.3 presents images showing large unilamellar vesicles (LUVs), 

tagged with 0.5 mol% Liss Rhod PE (LRPE) and loaded with an Alexa Fluor 647 

solution, within GUVs. The LUVs were prefabricated and loaded into the GUVs 

along with a FAM labeled oligonucleotide (DOGS.2 [500 nm]). The LUVs also 

contained 5 wt% PVA in PBS (pH 7.4), while the solution they were suspended in 

contained 10 wt% PVA, this ensured buoyancy of the LUVs within the GUV. The 

GUVs were collected in a 5 wt% PVA solution so they would settle on the cover 

slip. The GUVs were then imaged on a Zeiss LSM 800 Airyscan confocal 

microscope with a 40x oil objective, and the LUVs were images with 63x oil 

objective. The esteemed Richard Feynman said the following – “What I cannot 

create, I do not understand.” Currently, there is a lot of interest in building cell like 

 
Figure 8.3 – Compartments within Compartments. A) Zeiss LSM 800 Airyscan confocal image 
of GUVs loaded with 0.2 µm large unilamellar vesicles (LUVs) and a fluorescently tagged 
oligonucleotide (LUT in green). B) Zoomed in image of A, showing the LUVs, which have a DOPC 
bilayer spiked with 0.5 mol% LRPE (LUT in red) and are loaded with a solution of Alexa Fluor 647 
(LUT in white). 
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structures, such as membranes within membranes, and the data from Figure 8.3 

offers a way to create, and thus understand hierarchical compartment systems. 

Additionally, being able to transduce signals into inner compartments would be 

very impactful. Although the LUVs presented here are smaller than desired, 

perhaps 10 µm polymersomes can be loaded into 100 µm polymersomes, at which 

point DNA could be used to receive signals that cross into the polymer capsule.  

Speaking of polymersomes, encapsulation with polymersomes, as opposed 

to phospholipid bilayers, is a potentially fruitful avenue for future research. 

Polymersomes are considerably more stable than lipids, and they are more 

tunable. Eventually communication in and out of polymersomes could be achieved 

if the polymer membrane was permeable to ssDNA. Then, within the 

polymersome, logic gates could be linked to polystyrene beads, thereby preventing 

diffusion out of the polymersome in the absence of input signals. Alternatively, 

polymersomes could be used to create a membrane like region on the surface of 

a polystyrene bead, which provide an excellent platform for lipopolysaccharide 

presentation and detection. 

The systems presented here use lipid bilayers to spatially organize, and in 

some regards physically isolate, DNA-base molecular computing elements. The 

complex spatial organization of biomolecular circuits contributes significantly to 

their function. I believe that mimicking the compartmentalized systems found in 

biology will improve the performance of engineered molecular computing systems. 

Thereby, allowing them to operate at high levels in diagnostics and in vivo. 

  



www.manaraa.com

 132 

APPENDIX I – SUPPORTING INFORMATION FOR CHAPTER 3 

A Unified Sensor Architecture for Isothermal Detection of Double-Stranded 

DNA, Oligonucleotides, and Small Molecules 
 
A-I.1 Supplementary Methods 

In our experiments, we used a ~15% stoichiometric excess of inhibitor strands 

compared to DNAzymes at 2.5 uM when preparing the DNAzyme-inhibitor complex, to 

account for variation in concentrations between stocks and for pipetting errors. We aimed 

to minimize the complexity of circuit preparation by eliminating the need for purification of 

sensor complexes, therefore we left these excess inhibitors in the solution. This also helps 

to inhibit the DNAzymes more efficiently. However, the excess inhibitor may hinder circuit 

operation by binding to target strands, preventing them from activating the DNAzymes, 

and by rebinding activated DNAzyme strands to deactivate them. As a further step to 

suppress circuit leakage, we extended the inhibitor by 3 nt beyond the length of the fuel 

strand. This provided an additional toehold for rebinding of free DNAzymes to the fuel-

inhibitor complex, which reduces leakage by allowing spuriously released DNAzymes to 

rebind to the inhibitor, at the price of also re-inhibiting DNAzymes that were released 

through a valid reaction mechanism. To counteract these effects, we used an excess of 

substrate relative to the DNAzyme concentration and relied on output signal amplification 

via multiple-turnover cleavage reactions to provide a higher maximum signal-to-

background ratio. 

A-I.1.1 Oligonucleotide sequences 
Oligonucleotide sequences are presented in Tables A-I.1 – A-I.6. All sequences 

are listed 5’ to 3’. Substrates are cleaved at the dinucleotide junction between the two 

bases highlighted in red, and the catalytic cores of DNAzymes are highlighted in boldface. 

The RNA base at the cleavage site in the substrate strand is represented as rA. 
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Fluorescein fluorophores and TAMRA quenchers are represented as /FAM/ and /TAM/ 

respectively. 

A-I.1.2 Plasmid target selection 
The full nucleotide sequence for the prSET emGFP plasmid was obtained from the 

manufacturer (Life Technologies catalog number V353-20). The full nucleotide sequence 

for the SNAP25 plasmid was obtained from previous work on this plasmid in our lab [1]. 

This plasmid is based on the commercially Pinpoint Xa-1 vector (Promega catalog 

number: V2031, Genbank accession number: U47626.2). Targets were identified from 

unique areas of each plasmid via a custom NUPACK design script [2], to determine 

optimized detection sequences. Each 18 nt target was selected to contain minimal 

secondary structure. 

For optimal gate performance, it is important that the DNAzyme-inhibitor complex 

forms correctly and that the intermediate steps in the reaction mechanism do not lead to 

unwanted secondary structure formation. In particular, when the target binds to the 

detection module it displaces part of the DNAzyme strand, which is now single-stranded 

and positioned directly opposite the single-stranded toehold that was previously 

sequestered in the bulge. If there is any significant complementarity sequence between 

this part of the DNAzyme strand and the toehold on the inhibitor strand, it is highly likely 

that these two parts of the strands will hybridize. This would block the secondary toehold, 

preventing the fuel strand from binding and releasing the active DNAzyme from the 

complex. This issue can be addressed by choosing toehold sequences so that there is no 

possible interaction between the displaced target sequence and the toehold on the 

inhibitor strand. The results reported in the main text for the C1-3, E, and S sensors were 

obtained using a universal toehold sequence chosen from a restricted three-base alphabet 

(A,C,T). This minimized interactions between the inhibitor toehold and the G-poor target 

regions that we had selected from the plasmids. The data in Figures A-I.8 – A-I.11 show 
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that alternative toeholds may be used: in those Figures, a separate toehold was chosen 

for each sensor and similar behavior was observed. 

A-I.2 Supplementary Figures 
 

 
Figure A-I.1 - Plasmid Denaturation is Necessary for Target Detection. Fluorescent 
response with untreated emGFP (blue) is the same as without emGFP (orange), 
demonstrating the effect of pH cycling to expose the single-stranded domains of the 
plasmid. pH treatment of the plasmid (green) shows an immediate response. 
Concentrations: 40 nM DNAzyme, 50 nM inhibitor, 40 nM fuel, 40 nM emGFP, 250 nM 
substrate. 
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Figure A-I.2 - Sensor Performance in the Presence of Background DNA. Traces are 
gate only (black), gate with fuel only (blue), gate with target only (orange), and gate with 
both target and fuel. A) E gate performance with its corresponding target oligo B) E gate 
performance with its corresponding target oligo in the presence of background DNA. C) E 
gate performance with emGFP D) E gate performance with emGFP in the presence of 
background DNA. Background DNA was denatured herring sperm DNA (1ug/mL). Error 
bars (B, D) indicate one standard deviation of three replicates. Concentrations: 5 nM 
DNAzyme, 5.75 nM inhibitor, 5 nM fuel, 5 nM target, 25 nM emGFP, 50 nM substrate.  
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Figure A-I.3 - ATP Sensor Performance with Standard 8nt Loop Toehold. Addition of 
the fuel strand led to a higher than normal leakage in the gate compared to typical 
oligonucleotide or plasmid sensor responses. This is likely due to the shorter detection 
domain required for sufficient ATP aptamer activation (8 bp compared to 10 bp), that when 
coupled to an 8 nt loop enables a more productive invasion by the fuel strand. Error bars 
indicate one standard deviation of three replicates. Concentrations: 100 nM DNAzyme, 
115 nM inhibitor, 100 nM fuel, 1 mM ATP, 250 nM substrate.  

0.00 0.25 0.50 0.75 1.00
0

1000

2000

3000

4000

Time / hours

Fl
uo

re
sc

en
ce

 / 
a.

u.

ATP Gate (8bp)
-ATP
1mM ATP



www.manaraa.com

 137 

 
 

Figure A-I.4 - Optimization of Toeholds for ATP Sensor. 5 nt loop toeholds were tested 
for reduced gate leakage in the presence of fuel. Different mismatch base combinations 
were tested, varying the location of a single mismatch (base position 1, 2, or 3 from the 
reporter domain) and the presence or absence of a G-T wobble mismatch at the first base 
within the double-stranded reporter domain. Column 1 contains no G-T wobble, and a A) 
full mismatch in position 1, C) full mismatch in position 2, and E) full mismatch in position 
3. Column 2 contains the G-T wobble, and a B) full mismatch in position 1, D) full mismatch 
in position 2, and F) full mismatch in position 3. Concentrations: 100 nM DNAzyme, 115 
nM inhibitor, 100 nM fuel, 1 mM ATP, 250 nM substrate.  
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Figure A-I.5 - Effect of Longer Blocking Sequences on ATP Aptamer Activation. Only 
the 8bp blocking sequence is sufficient for activation (blue). Longer sequences, such as 
the 11bp (green) or 15 bp (red) lengths, blocked the ATP from displacing the detection 
domain, resulting in no gate activation. Fuel and loop toehold has a mismatched base in 
the 3rd position away from the reporter domain. Concentrations: 100 nM DNAzyme, 125 
nM inhibitor, 100 nM fuel, 1 mM ATP, 250 nM substrate.  
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Figure A-I.6 - The effect of Mismatches on Sensor Performance. A) Rational 
mismatches were introduced to destabilize the binding of the free single-stranded fuel and 
the corresponding toehold on the inhibitor, sequestered in a loop. The position of the 
mismatch plays an important role in leakage and activation profiles. B) Sensor response 
with no mismatches results in high leakage. (C-E) The addition of a single mismatch 
significantly reduces this leakage. (F) The addition of two mismatches eliminates leakage, 
at the cost of activation rate. (G) Alternatively, activation rate can be increased through a 
larger loop, added more bases for the fuel to bind to the inhibitor. Insets for graphs depict 
the specific location for each mismatch. Concentrations: 100 nM DNAzyme, 125 nM 
inhibitor, 100 nM fuel, 100 nM target, 50 nM substrate.  
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Figure A-I.7 - Effect of an Additional Mismatch, at the P0 Position. The mismatch was 
either a full mismatch (C-T) or a wobble mismatch (G-T). Each previously characterized 
gate was run with each new fuel containing either the CT or GT mismatch. (A) No 
mismatch gate (B) P1 gate (C) P2 gate (D) P3 gate (E) P1, P2 gate and (F) P1, P2, L8 
gate. Concentrations: 40 nM DNAzyme, 50 nM inhibitor, 40 nM fuel, 40 nM target, 250 nM 
substrate.  
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Figure A-I.8 - Response of Each Individual Gate in the Presence of emGFP Plasmid. 
A significantly higher fluorescent response was observed under these conditions. The 
response of using individual fuels compared to a universal fuel was similar, with some 
variations in signal and leakage (most notably in gate C2), indicating the viability of either 
approach. Column 1 indicates gate response with the universal fuel, column 2 contains 
individual fuels. (A-B) Gate C1, (C-D) Gate C2, (E-F) Gate C3, (G-H) Gate E, (I-J) Gate 
S. Concentrations: 5 nM DNAzyme, 5.75 nM inhibitor, 5 nM fuel, 25 nM emGFP, 250 nM 
substrate.  
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Figure A-I.9 - Response of each Individual Gate in the Presence of SNAP25 Plasmid. 
A significantly higher fluorescent response was observed under these conditions. The 
response of using individual fuels compared to a universal fuel was similar, with some 
variations in signal and leakage, indicating the viability of either approach. Column 1 
indicates gate response with the universal fuel, column 2 contains individual fuels. (A-B) 
Gate C1, (C-D) Gate C2, (E-F) Gate C3, (G-H) Gate E, (I-J) Gate S. Concentrations: 5 nM 
DNAzyme, 5.75 nM inhibitor, 5 nM fuel, 25 nM SNAP25, 250 nM substrate.  
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A)                                                                B) 

 
Figure A-I.10 - Response of all Five Sensors Combined in the Presence of emGFP 
Plasmid. Comparing the effect of using a A) universal fuel strand versus B) 
individualized fuel strands. A significantly higher fluorescent response was observed 
under these conditions. The response of using individual fuels compared to a universal 
fuel was similar, with the universal fuel yielding a slight increase in positive fluorescence, 
indicating the viability of either approach. Concentrations: 5 nM DNAzyme/sensor, 5.75 
nM inhibitor/sensor, 25 nM universal fuel or 5 nM individual fuel/sensor, 25 nM emGFP, 
250 nM substrate. 
 
 
A)                                                                B)

 
Figure A-I.11 - Response of all Five Sensors Combined in the Presence of SNAP25 
Plasmid. Comparing the effect of using A) a universal fuel strand versus B) individualized 
fuel strands. A significantly higher fluorescent response was observed with all five sensors 
compared to a single gate. The response of using individual fuels compared to a universal 
fuel was similar, indicating the viability of either approach. Concentrations: 5 nM 
DNAzyme/sensor, 5.75 nM inhibitor/sensor, 25 nM universal fuel or 5 nM individual 
fuel/sensor, 25 nM SNAP25, 250 nM substrate.  
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A-I.3 Supplementary Tables 
Table A-I.1 - Biosensor sequences. Target sequences reflect the entirety of the 
target oligonucleotide sequences as well as the sequence contained within the 
respective plasmid (Figures 2-6, S2, S8-S11). 

Strand Sequence 
Substrate FAM-TCTTAGTTrAGTCTATCCAAT-TAM 
Universal Fuel GGTCGAAAACTAAGGCATGTTGG 
C1 DNAzyme TGGATAGATCCGAGCCGGTCGAAAACTAAGAAACTACAACA 
C1 inhibitor CTTGTGGCTGTTGTAGTTCCAACACCTCTTAGTTTTCGACCGGC 
C1 target AACTACAACAGCCACAAG 
C2 DNAzyme TGGATAGATCCGAGCCGGTCGAAAACTAAGAAACTATTAAC 
C2 inhibitor GTTCGCCAGTTAATAGTTCCCAACCCTCTTAGTTTTCGACCGGC 
C2 target AACTATTAACTGGCGAAC 
C3 DNAzyme TGGATAGATCCGAGCCGGTCGAAAACTAAGAACCAAATACT 
C3 inhibitor AGAAGAACAGTATTTGGTCAAACCCCTCTTAGTTTTCGACCGGC 
C3 target ACCAAATACTGTTCTTCT 
E DNAzyme TGGATAGATCCGAGCCGGTCGAAAACTAAGACTCATCATCA 
E inhibitor GATGATGATGATGATGAGCAACACCCTCTTAGTTTTCGACCGGC 
E target CTCATCATCATCATCATC 
S DNAzyme TGGATAGATCCGAGCCGGTCGAAAACTAAGAAACCATATCA 
S inhibitor GTCTTGGTTGATATGGTTCCACCACCTCTTAGTTTTCGACCGGC 
S target AACCATATCAACCAAGAC 
ATP DNAzyme ACCTGGGGGAGTATGTGCGGAGGAAGGTACACCTCTTAGTTTTCGACCGGC 
ATP inhibitor GGTCGAAAACTAAGAGATGT 
ATP target ATP, GTP 

Table A-I.2 - Sequences for Plasmid Denaturation Controls (Figure S1).  
Strand Sequence 
Dz GAACTATCTCCGAGCCGGTCGAAAACTAAGAAACAACACTC 
INH (P1,2,L8) ATAGGGTTGAGTGTTGTT CATCTCGC TCTTAGTT TTCGACCGGC 
GT Fuel (L8) GGTCGAAAACTAAGGTGGAGATG 
Target pRSET emGFP 
Substrate FAM-TCTTAGTTrAGGATAGTTCAT-TAM 

Table A-I.3 - Sequences from ATP Sensor Toehold Optimization (Figures S3,S4). 
Sequences correspond to toehold length (5nt vs 8nt). Sequence in bold were used 
for the ATP sensor demonstration (Figure 6). 

Strand Sequence 
Substrate (8nt) FAM-TCTTAGTTrAGGATAGTTCAT-TAM 
ATP DNAzyme (8nt) GAACTATCTCCGAGCCGGTCGAAAACTAAGAACCTTCCT 
ATP inhibitor (8nt) ACCTGGGGGAGTATGTGCGGAGGAAGGTCCAACACCTCTTAGTTTTCGACC

GGC 
ATP fuel (8nt) GGTCGAAAACTAAGGCATGTTGG 
Substrate (5b) FAM-TCTTAGTTrAGTCTATCCAAT-TAM 
ATP DNAzyme (5nt) TGGATAGATCCGAGCCGGTCGAAAACTAAGAACCTTCCT 

ATP inhibitor (5nt) ACCTGGGGGAGTATGTGCGGAGGAAGGTACACCTCTTAGTTTTCGACCGGC 
ATP Fuel (5nt-1A) GGTCGAAAACTAAGAGGCGT 
ATP Fuel (5nt-1G) GGTCGAAAACTAAGGGGCGT 
ATP Fuel (5nt-2A) GGTCGAAAACTAAGAGATGT 
ATP Fuel (5nt-2G) GGTCGAAAACTAAGGGATGT 
ATP Fuel (5nt-3A) GGTCGAAAACTAAGATGTGT 
ATP Fuel (5nt-3G) GGTCGAAAACTAAGGTGTGT 
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Table A-I.4 - Sequences from ATP Sensor Inhibitor Length Experiments (Figure S5).  
Strand Sequence 
Substrate (8nt) FAM-TCTTAGTTrAGGATAGTTCAT-TAM 
ATP DNAzyme-Apt8 GAACTATCTCCGAGCCGGTCGAAAACTAAGAACCTTCCT 
ATP DNAzyme-Apt11 GAACTATCTCCGAGCCGGTCGAAAACTAAGAACCTTCCTCCG 
ATP DNAzyme-Apt15 GAACTATCTCCGAGCCGGTCGAAAACTAAGAACCTTCCTCCGCACA 
ATP inhibitor ACCTGGGGGAGTATGTGCGGAGGAAGGTCTCCATCTTAGTTTTCGACCGG

C 
ATP Fuel GGTCGAAAACTAAGATGCAG 

Table A-I.5 - Sequences for Toehold Optimization (Figure S6,S7). 
Strand Sequence 
Dz GAACTATCTCCGAGCCGGTCGAAAACTAAGAAACAACACTC 
INH ATAGGGTTGAGTGTTGTT CTCCA TCTTAGTT TTCGACCGGC 
INH (P1) ATAGGGTTGAGTGTTGTT CTCCT TCTTAGTT TTCGACCGGC 
INH (P2) ATAGGGTTGAGTGTTGTT CTCGA TCTTAGTT TTCGACCGGC 
INH (P3) ATAGGGTTGAGTGTTGTT CTGCA TCTTAGTT TTCGACCGGC 
INH (P1,2) ATAGGGTTGAGTGTTGTT CTCGC TCTTAGTT TTCGACCGGC 
INH (P1,2,L8) ATAGGGTTGAGTGTTGTTCATCTCGCTCTTAGTTTTCGACCGGC 
Fuel GGTCGAAAACTAAGATGGAG 
Fuel (L8) GGTCGAAAACTAAGATGGAGATG 
Target AACAACACTCAACCCTAT 
Substrate FAM-TCTTAGTTrAGGATAGTTCAT-TAM 

 
Table A-I.6 - Sequences From Experiments Using Individual Toeholds  
(Figures A-1.8-A-I.11). 

Strand Sequence 
Substrate FAM-TCTTAGTTrAGTCTATCCAAT-TAM 
C1 DNAzyme TGGATAGATCCGAGCCGGTCGAAAACTAAGAAACTACAACA 
C1 ind inhibitor CTTGTGGCTGTTGTAGTTCCAACACCTCTTAGTTTTCGACCGGC 
C1 fuel AACTACAACAGCCACAAG 
C2 DNAzyme TGGATAGATCCGAGCCGGTCGAAAACTAAGAAACTATTAAC 
C2 ind inhibitor GTTCGCCAGTTAATAGTTCCCAACCCTCTTAGTTTTCGACCGGC 
C2 fuel GGTCGAAAACTAAGGCAGTTGGG 
C3 DNAzyme TGGATAGATCCGAGCCGGTCGAAAACTAAGAACCAAATACT 
C3 ind inhibitor AGAAGAACAGTATTTGGTCAAACCCCTCTTAGTTTTCGACCGGC 
C3 fuel GGTCGAAAACTAAGGCAGGTTTG 
E DNAzyme TGGATAGATCCGAGCCGGTCGAAAACTAAGACTCATCATCA 
E ind inhibitor GATGATGATGATGATGAGCAACACCCTCTTAGTTTTCGACCGGC 
E fuel GGTCGAAAACTAAGGCAGTGTTG 
S DNAzyme TGGATAGATCCGAGCCGGTCGAAAACTAAGAAACCATATCA 
S ind inhibitor GTCTTGGTTGATATGGTTACACCACCTCTTAGTTTTCGACCGGC 
S fuel GGTCGAAAACTAAGGCATGGTGT 
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A-II.1 Strand Design 
Table A-II.1 - TMSD Sequences 

Name Sequence (5’ -> 3’) 
Standardized Thiol /5ThioMC6-D/ TTTTTTTTTTTTATGTATCTTAGTTTTCGACCGGT 

ATGAGTGTAGATGTGAAGTTTG 
Sero1 incumbent /5ATTO647NN/TCTTCCCTTTATGCAAACTTCACATCTACACTCATA

CCG 
Sero1 template CATAAAGGGAAGAGAGAT/3IAbRQSp/ 

Sero1 target ATCTCTCTTCCCTTTATG 

Sero2 incumbent /5ATTO647NN/CTCTTAACATCCTCAAACTTCACATCTACACTCATA
CCG  

Sero2 template AGGATGTTAAGAGCAGTG/3IAbRQSp/ 

Sero2 target CACTGCTCTTAACATCCT 

Sero3 incumbent /5ATTO647NN/TACCCGCAACATTCAAACTTCACATCTACACTCAT
ACCG  

Sero3 template AATGTTGCGGGTATGGAG/3IAbRQSp/ 
Sero3 target CTCCATACCCGCAACATT 

Sero4 incumbent /5ATTO647NN/CTTTGTCCTAATGCAAACTTCACATCTACACTCATA
CCG 

Sero4 template CATTAGGACAAAGAAGAC/3IAbRQSp/ 

Sero4 target GTCTTCTTTGTCCTAATG 
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Table A-II.2 - DNAzyme Sequences: 

 
A-II.2 Non-Specific Interaction Controls 
  

To confirm conjugation specificity controls lacking MPB PE were run, Figure 

S-7. These controls were exposed to the fluorescently labeled incumbent strand.  

For the non-specific interaction experiments in the presence of Zn2+ an oligo 

complementary to TSS and tagged with Cy5 (Cy5_Substrate_no_r_TSS), instead 

of the expensive ATTO647 labeled chimeric substrate (Substrate_TSS), was used.  

 
A-II.3 Limit of Detection 

To determine the limit of detection a single µSLB population was used. Five 

replicates of each sample were run, and each sample set was exposed to 5 target 

concentrations (5 nM, 1 nM, 500 pM, 100 pM and 50 pM). The samples were gated 

on forward versus side scatter, and then median fluorescence values were 

calculated for the incumbent strand. The baseline (no target added) was 

subtracted from all samples and a linear regression was calculated. To calculate 

the limit of detection the IUPAC equation1 (1) was used, where sB is standard 

Thiol Strand 
DNAzyme (TSD) 

CAAACTTCACATCTACACTCAAAAA/3ThioMC3-D/ 

DNAzyme_TSD GAGTGTAGATGTGAAGTTTGAAAAAGAACTATCTCCGAGCCGGTCG
AAAACTAAGA 
 

Thiol Strand 
Substrate (TSS) 

/5ThioMC6-D/AAA AAGAATAGAACAAGACAGAAAC 

Substrate_TSS /5ATTO647NN/TCTTAGTT rAG GATAGTTCAT AAAAA 
GTTTCTGTCTTGTTCTATTC 

FRET Substrate /56-FAM/TCTTAGTT rAG GATAGTTCAT /36-TAMSp/ 

Cy5_Substrate_no
_r_TSS 

/5Cy5/TCTTAGTTAGGATAGTTCATAAAAAGTTTCTGTCTTGTTCTAT
TC 
 

Thiol Strand Filler 
(TSF) 

CCATACCATCAACTCAACCTAAAAA/3ThioMC3-D/ 
 

Blocking 
strand_TSF 

AGGTTGAGTTGATGGTATGG 
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deviation of the background, si is error of the y-intercept of a linear regression of 

concentration plotted against response, i is the y-intercept of a linear regression of 

concentration plotted against response, m is the slope of a linear regression of 

concentration plotted against response, and sm is the error of the slope. 

(1)	Limit	of	Detection = 	
/01234153467

5
89

3
183:

;
 

 
A-II.4 Confocal Microscopy 

Confocal stack images were used to confirm even coating of the SiMSs. 

See Movie S2, which shows the DNA-lipid conjugate (here, there is 1 mol% MPB 

PE, the Standardized Thiol strand was conjugated and this is on the Cy5 channel), 

there are 19 steps at 1 µm/step. Movie S3 is the same bead, showing the lipid 

(PECF) channel. 

A-II.5 Merging  
Merging of individual populations does occur over time. This merging can 

be mitigated by coating the particles with bovine serum albumin (BSA), and by 

rotating the particles. Figure S-4 shows the samples at 4 hours. 
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A-II.6 Supporting Figures 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

Figure A-II.1 – SiMS Gating and 9-Plex. a) Initially the µSLBs were gated on FSC 
vs. SSC. b) A multiplex of nine populations, using green (PECF) and yellow (PELR) 
fluorophores. Four of the populations have the same concentrations as described in 
Figure 1; the other 5 populations have intermediate concentrations of green and 
yellow fluorophores. 
 

a)                                                     b) 
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Figure A-II.2 - Individual TMSD Functionality Test. A positive control was established by 
hybridizing the fluorescently labeled incumbent strand. Next the incumbent and template strand, 
which comprised the complete TMSD gate, were hybridized to the corresponding µSLB set. Finally 
the corresponding target sequences were added to the µSLB population with the complete TMSD 
gate hybridized. 
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Figure A-II.3 - Second Data Set, Representing the Same Experimental Setup as Figure 
4.2C. 0.5 mol% MPB PE, which represents ~2.25×106 DNA-lipid conjugates/μSLB. The error 
bars represent standard error of mean for 7 replicates. 
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Figure A-II.4 – Merging with BSA Coat 
and Rotation.  Multiplexed µSLBs, 
coated with BSA and rotated for 4 hours 
at room temperature (shown in green), 
remain discretely separated. The initial 
readings are shown in black.  
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Figure A-II.5 - TMSD Gates and Multiplex Formation. Four µSLB populations (1-4) were 
generated separately. Each population was identified by a spectral address that corresponds to a 
specific TMSD gate. These populations were then combined in a single tube to form a multiplex. 
Addition of target strands (2 and 4 in this case) resulted in a TMSD reaction and an increase in the 
incumbent strand fluorescence. 
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Figure A-II.6 - Solution Phase DNAzyme and Solution phase Substrate Reaction in the 
Presence of Decreasing Na+ Concentrations. DNAzyme [100 nM], substrate [250nM], with 25 
µM Zn2+ and 50 mM HEPES. 
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a)   b)   c) 
 
 
 
 
 
 
 
d)   e)   f) 
 
 
 
 
 
 
 
Figure A-II.7 – Non-Specific Interaction Controls. a), b) and c) All bilayers contain 0.5 mol% 
PECF, and show equal fluorescence for the 488/520 nm filter. d) The positive control contains 1 
mol% MPB PE, and the Standardized Thiol strand is conjugated. This is the 647/670 nm filter. See 
Movie S2. e) This hybridization control is a µSLB population with TSF conjugated to the bilayer, 
which is not complementary to the fluorescently labeled incumbent strand. This is the 647/670 nm 
filter. f) This conjugation control contains no MPB PE. This is the 647/670 nm filter. 
 
 
A-II.7 References 
(1) Long, G. L.; Winefordner, J. D. Limit of Detection. Anal. Chem. 1983, 55, 

712–724. 
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APPENDIX III – SUPPORTING INFORMATION FOR CHAPTER 6 
 

DNA Functionalized Oligophenylenevinylenes for 
Transmembrane Signal Transduction 

 
A-III.1 Synthesis of SP-III-163C 
A-III.1.1 Synthesis of Intermediate SP-III-131C 

This procedure was adopted from Garner et al.,1  and began with the 

preparation of (E)-1,2-bis(4-(chloromethyl)phenyl)ethene (SP-III-130C). A 250 mL 

round-bottom flask was placed under an Argon atmosphere and flame dried. To 

the flask was added 40 mg of 2nd generation Grubbs catalyst (0.047 mmol, 1 eq.) 

dissolved in anhydrous CH2Cl2 and this solution was degassed. To the reaction 

flask was added 1.34 mL (202 eq., 9.5 mmol) dry 4-vinylbenzyl chloride. The 

solution was slowly refluxed under Ar at 50 °C for 24 hours. The reaction solution 

was then allowed to cool slowly and concentrated up to ~10 mL. The product 

crystallized out of the reaction solution and the crude (off-white needle crystals) 

was collected via filtration and washed with cold hexanes. Following silica gel 

chromatography using 1:1 (CH2Cl2:hexane) solvent system, the pure product was 

afforded as a white solid 920 mg (35% yield). MP: 160-163 °C. 1H NMR (500 MHz, 

CDCl3): δ 7.51 (d, J= 8.4 Hz, 4H), 7.38 (d, J= 7.6 Hz, 4H), 7.11 (s, 2H), 4.60 (s, 

4H). 13C (125 MHz, CDCl3): δ 137.47, 137.03, 129.16, 128.77, 127.00, 46.20. 

Figure A-III.1 - Synthesis of SP-III-163C. Shown in the next page. The synthesis begins with 
the metathesis condensation of 4-vinylbenzyl chloride to yield SP-III-130C. This is followed by 
an Arbuzov reaction to yield SP-III-131C. Synthesis of the intermediate SP-III-159C begins 
with replacing aniline’s protons with two hexanol moiety. The electron rich aromatic SP-III-
149C is converted to SP-III-159C via a Vilsmeier-Haack formulation. A Horner-Wadsworth-
Emmons reaction yields SP-III-161C, by dropwise addition of SP-III-159C to a solution 
containing SP-III-131C. From here the terminal chlorine groups are replaced by iodine with a 
Finkelstein reaction, which is an equilibrium reaction that is pushed to completion because one 
of the side products, NaCl, is not soluble in acetone. Finally, a nucleophilic substitution (SN2) 
replaces the alkyl iodide with an azide, to yield the final compound, SP-III-163C. 



www.manaraa.com

 157 

 



www.manaraa.com

 158 

 To prepare (E)-4,4’-bis(diethylphosphonatemethyl)stilbene (SP-III-131C), 

500 mg of SP-III-130C (1 eq., 1.8 mmol) and 10 mL of neat triethylphosphite was 

combined in a 100 mL round bottom flask equipped with a reflux condenser. This 

solution was allowed to reflux at 120 °C for 48 hours. Upon completion of the 

reaction, solution was allowed to cool and the off-white solid crude product was 

isolated via removal of excess P(OEt)3 by vacuum distillation. Pure 3 was obtained 

as white crystals in 35 % yield by recrystallization from diethyl ether.1H NMR (500 

MHz, CDCl3): δ 7.42 (d, J= 7.6 Hz, 4H), 7.25 (d, J= 14 Hz, 4H), 7.03 (s, 2H), 3.99 

(t, (d, J= 7.6 Hz, 8H), 3.13 (d, (d, J= 22 Hz, 4H), 1.22 (t, (d, J= 6.8 Hz, 12H). 13C 

(125 MHz, CDCl3): δ 136.14, 136.10, 131.14, 131.05, 130.27, 130.20, 128.28, 

126.78, 126.75, 62.37, 62.31, 34.41, 33.04, 16.55, 16.49. 

A-III.1.2 Synthesis of Intermediate SP-III-159C 
To synthesize N,N-Bis(6-hydroxyhexyl)aniline (SP-III-149C), a procedure 

adopted from Woo et al. was used.2 A mixture of 1.14 mL g (12.5 mmol, 1 eq) of 

aniline, 3.66 mL (27.5 mmol, 2.2 eq) of 6-chloro-1-hexanol, and 3.8 g (27.5 mmol, 

2.2 eq) potassium carbonate was heated in 25 mL of n-butanol under reflux for 4 

days. After cooling, the remaining solids were filtered off, and the solvent was 

removed under reduced pressure to afford the crude product. Purification by silica 

gel chromatography (2:1 ethyl acetate/hexane) yielded 1.2 g (32% yield) of SP-III-

149C as a yellow thick oil. 1H NMR (500 MHz, CDCl3): δ 7.19 (t, J= 7.2 Hz, 2H), 

6.63 (d, J= 8 Hz, 3H), 3.64 (t, J= 6.4 Hz, 4H), 3.25 (t, J= 7.6 Hz, 4H), 1.61-1.56 (m, 

8H), 1.43-1.35 (m, 8H).13C (125 MHz, CDCl3): δ 148.24, 129.31, 115.38, 111.91, 

62.98, 51.08, 32.85, 27.33, 27.06, 25.77. 
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To synthesize N,N-Bis(6`-chlorohexyl)-4-aminobenzaldehyde (SP-III-

159C), phosphorus oxychloride (0.83 mL, 9 mmol, 3.5 eq) was added dropwise to 

5 mL of dry DMF at 0 °C. After 30 min, 0.75 g (2.6 mmol, 1 eq) of SP-III-149C in 3 

mL of DMF was added to the above solution. The resulting mixture was heated to 

100 °C for 3 h. After cooling to room temperature, 50 mL of ice water was poured 

into reaction mixture. The pH of the mixture was adjusted to 7 by addition of 

saturated potassium acetate aqueous solution. The mixture was extracted with 

dichloromethane, and the combined organic phase was washed with water and 

dried over Na2SO4. The solvent was evaporated and the crude product was 

purified by silica gel chromatography (starting with 10% hexane:ethyl acetate and 

increased to 40% hexane:ethyl acetate) to afford SP-III-159C (0.3 mg, 33%) as a 

light yellow oil. 1H NMR (500 MHz, CDCl3): δ 9.70 (s, 1H), 7.69 (d, J= 8.4 Hz, 2H), 

6.63 (d, J= 9.2 Hz, 2H), 3.54 (t, J= 6.8 Hz, 4H), 3.35 (t, J= 7.2 Hz, 4H), 1.83-1.76 

(m, 4H), 1.67-1.59 (m, 4H), 1.54-1.46 (m, 4H), 1.41-1.35 (m, 4H). 13C (125 MHz, 

CDCl3): δ 190.04, 152.56, 132.32, 124.87, 110.83, 51.04, 45.01, 32.58, 27.15, 

26.78, 26.43. 

A-III.1.3 Synthesis of the final compound 

To synthesize 4,4'-((1E,1'E)-(((E)-ethene-1,2-diyl)bis(4,1-

phenylene))bis(ethene-2,1-diyl))bis(N,N-bis(6-chlorohexyl)aniline) SP-III-161C, 

NaH (42 mg, 1.04 mmol, 60% in oil, 5 eq) was suspended in 5 mL anhydrous THF 

at 0 °C under argon atmosphere with stirring. SP-III-131C dissolved in THH was 

added dropwise, followed by addition of SP-III-159C (186 mg, 0.52 mmol, 2.5 eq) 

dissolved in THF. The stirring was continued at room temperature overnight. The 
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reaction mixture was cooled to 0 °C then water (2 mL) was added dropwise under 

argon with stirring. 2N Hydrochloric acid (5 mL) was added dropwise to the reaction 

mixture then it was extracted with diethyl ether. The organic layers were collected, 

dried (MgSO4), filtered and the solvent removed under reduced pressure to give 

the crude product, which was applied to a silica gel column chromatography using 

1:1 dichloromethane:hexane solvent system. Fractions containing the required 

product were collected and the solvent removed under reduced pressure. 

Yellowish crystals (0.11 g, 54%). MP: 123-126 °C. 1H NMR (500 MHz, CDCl3): δ 

7.45 (d, J= 10.4 Hz, 4H), 7.40 (d, J= 4.8 Hz, 4H), 7.36 (t, J= 4 Hz, 4H), 7.09-7.00 

(m, 4H), 6.87 (t, J= 12.8 Hz, 2H), 6.60 (t, J= 12.4 Hz, 4H), 3.53 (t, J= 13.2 Hz, 8H), 

3.27 (d, J= 6 Hz, 8H), 1.81-1.73 (m, 8H), 1.67-1.59 (m, 4H), 1.60-1.34 (m, 28H). 

13C (125 MHz, CDCl3): δ 147.78, 137.75, 135.95, 128.82, 127.95, 127.87, 126.84, 

126.36, 124.96, 123.64, 111.90, 51.07, 45.13, 32.69, 27.34, 26.89, 26.56. 

  To synthesize 4,4'-((1E,1'E)-(((E)-ethene-1,2-diyl)bis(4,1-

phenylene))bis(ethene-2,1-diyl))bis(N,N-bis(6-iodohexyl)aniline) SP-III-162C, to a 

flame dried round bottom flask was added sodium iodide (168 mg, 1.12 mmol, 10 

eq) and under argon atmosphere was added SP-III-161C (100 mg, 0.112 mmol, 1 

eq) dissolved in 5 mL anhydrous acetone. Reaction mixture was refluxed for 48 

hours under argon atmosphere. Upon cooling down to room temperature, acetone 

was evaporated and reaction mixture dissolved in 50 mL CH2Cl2, washed twice 

with water (to remove excess NaI) and dried over MgSO4. Yellow solid obtained 

after recrystallization in diethyl ether. 1H NMR (500 MHz, CDCl3): δ 7.46 (t, J= 1.6 

Hz, 8H), 7.38 (d, J= 8.4 Hz, 4H), 7.08 (t, J= 7.6 Hz, 4H), 7.03 (s, 2H), 6.88 (d, J= 
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16 Hz, 2H), 6.62 (d, J= 8.4 Hz, 4H), 3.29 (t, J= 6.8 Hz, 8H), 3.20 (t, J= 6.8 Hz, 8H), 

1.88-1.81 (m, 8H), 1.65-1.57 (m, 8H), 1.53-1.46 (m, 8H), 1.44-1.36 (m, 8H).  

13C (125 MHz, CDCl3): δ 147.78, 137.73, 135.95, 128.82, 127.96, 127.85, 126.85, 

126.38, 124.99, 123.65, 111.92, 51.07, 33.56, 30.49, 27.30, 26.22, 7.13. 

  4,4'-((1E,1'E)-(((E)-ethene-1,2-diyl)bis(4,1-phenylene))bis(ethene-2,1-

diyl))bis(N,N-bis(6-azidohexyl)aniline) SP-III-163C. SP-III-162C (50 mg, 0.04 

mmol) were dissolved in 2 mL DMF, followed by addition of sodium azide (72 mg, 

1.12 mmol). Reaction mixture was heated for 2 hours at 60 °C and stirred overnight 

at room temperature. Water was added (50 mL) and product was extracted with 

35 mL ethyl acetate. Organic layer was 

washed twice with water (25 mL each), 

dried over MgSO4 and concentrated 

under vacuum. Recrystallization in 

diethyl ether yielded yellow solid 

compound. Figure A-III.2 shows the 

emission spectrum of this comound in 

chloroform. 1H NMR (500 MHz, CDCl3): 

δ 7.47 (t, J= 9.6 Hz, 8H), 7.39 (d, J= 8 Hz, 4H), 7.08 (d, J= 7.2 Hz, 2H), 7.03 (s, 

2H), 6.88 (d, J= 16 Hz, 2H), 6.62 (d, J= 8.4 Hz, 4H), 3.31-3.26 (m, 14H), 3.20 (t, 

J= 6.8 Hz, 2H), 1.86-1.83 (m, 4H), 1.63-1.37 (m, 28H). 13C (125 MHz, CDCl3): δ 

147.77, 137.73, 135.95, 128.82, 127.96, 127.85, 126.84, 126.37, 124.99, 123.65, 

111.91, 51.49, 51.07, 33.55, 30.48, 28.98, 27.37, 27.29, 26.84, 26.79, 26.22, 7.12. 

 

 
Figure A-III.2 - Emission Spectrum of SP-
III-163C in Chloroform. The emission 
spectrum of SP-III-163C, with excitation at 420 
nm, shows maximal emission at 525 nm.  
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A-III.2 Strand Design 
Table A-III.1 - Strand Sequences 

Name Sequence 

Enz1 5’ - T GAACTATC TCCGAGC AAAAA /35OctdU/ - 3’ 

Enz1_tagged 5’ - /5ATTO647NN/ T GAACTATC TCCGAGC AAAAA /35OctdU/ - 3’ 
 

Enz2_tagged 5’ /55OctdU/ AAAAA CGGTCGAA AACTAAGA /3ATTO565N/ - 3’ 

Tether Strand 5’- TCTTAGTT AG GATAGTTC AT – 3’ 

U2 Substrate 5’ - /56FAM/ TCT TAG TTrA GGA TAG TTC AT /36-TAMSp/ - 3’ 

 

  

 

 

Figure A-III.3 – HPLC of SP-III-163C-Enz1. We were able to narrow the 30-minute 
peak by increasing to 20% ACN immediately, instead of the linear increase, from 2% - 
30%, shown here. However, the yield was always around 0.1% no matter how much we 
optimized the system. 
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A-III.3 Effects of THF 

A-IIII.4 References 
1. Garner, L. E. et al. Modification of the Optoelectronic Properties of 

Membranes via Insertion of Amphiphilic Phenylenevinylene 
Oligoelectrolytes. J. Am. Chem. Soc. 132, 10042–10052 (2010). 

2. Han Young Woo et al. Solvent Effects on the Two-Photon Absorption of 
Distyrylbenzene Chromophores. Journal of the American Chemical Society 
127, 14721–14729 (American Chemical Society, 2005). 

3. Mokany, E., Bone, S. M., Young, P. E., Doan, T. B. & Todd, A. V. 
MNAzymes, a Versatile New Class of Nucleic Acid Enzymes That Can 
Function as Biosensors and Molecular Switches. J. Am. Chem. Soc. 132, 
1051–1059 (2010). 

 

 
  

 
Figure A-III.4 - Effects of THF on DNA and ATTO647. A) Initial UV-Vis spectrum. B) UV-Vis spectrum 
at 1 week. 
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APPENDIX IV – SUPPORTING INFORMATION FOR CHAPTER 7 
 

Physical Isolation and Protection of Molecular Computing Elements in 
Giant Unilamellar Vesicles 

Aurora Fabry-Wood,† Madalyn Elise Fetrow,† Ayomide Oloyede,† Kyung-Ae Yang,# Milan 
Stojanovic,#,⊥ Darko Stefanovic,†,§ Steven W. Graves,†,‡,*         Nick J. Carroll,†,‡,* Matthew R. 
Lakin§,†,* 

†Center for Biomedical Engineering, ‡Department of Chemical and Biological Engineering, and 
§Department of Computer Science, University of New Mexico, Albuquerque, New Mexico 87131, 
United States  

#Division of Experimental Therapeutics, Department of Medicine, ⊥Departments of Biomedical 
Engineering and Systems Biology, Columbia University Medical Center, New York, New York 
10032, United States  

Supporting Information 
 

Table A-IV.1 - Strand Sequences  
Name Sequence 
DOGS.2 
aptamer 

/56-
FAM/CTCTCGGGACGACCCGGATTTTCCGAGTGGAACTAGCTGTGGCGGT
CGTCCC 

DOGS.2 
quencher 

GTCGTCCCGAGAG/3IABkFQ/ 
 

CSS.1 
aptamer 

CTTCAACCGCCCGCATGTTCCATGGATAGTCTTGACTAGGTTGAAGTTGGA/
3ATTO647NN/ 

CSS.1 
quencher 

/5IAbRQ/TCCAACTTCAACC 

DOGS.2 
aptamer 
complement 
(A*) 

GGGACGACCGCCACAGCTAGTTCCACTCGGAAAATCCGGGTCGTCCCGAG
AG 
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A-IV.1 Supporting Figures 
 
   

Figure A-IV.1 – Optimizing the Amount of 
Excess Quencher. To determine the amount of 
excess quencher required for efficient quenching 
and strong ligand-dependent activation. The 
DOGS.2 quencher at 0, 50, 55, 60, 75 and 100 
nM was added to DOGS.2 aptamer [50 nM], in 
10 wt% PVA, in PBS pH 7.4. At a 1:1 ration (50 
nM aptamer:50 nM quencher) nearly complete 
quenching was achieved. With 10 mol% excess 
quencher (50 nm aptamer:55 nM quencher) full 
quenching was achieved, with minimal 
improvement at higher quencher concentrations. 
The FAM channel (488/520 nm) was baseline 
corrected to remove autofluorescence of the 
PVA solution. 
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Figure A-IV.2 - The Need for Prehybridization. A) Various concentration of the DC steroid 
added to the DOGS.2 aptamer/quencher in PBS over time, showing minimal variation across 
replicates and time. B) The same as panel A in the presence of 10 wt% PVA, showing 
significantly more variation across both replicates and time. C) Prehybridized vs Hybridization 
over time in PBS of the DOGS.2 aptamer and quencher. D) The same as panel C in the presence 
of 10 wt% PVA, showing more variation across replicates and a decreased rate of hybridization. 
E) The same as panel C without mixing, showing a decreased rate of hybridization. F) The same 
as panel E in the presence of 10 wt% PVA, showing increased variation across replicates and a 
decreased rate of hybridization. Error bars for all plots represent SEM for 3 replicates.  
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Figure A-IV.3 - Aptamer Responses in 
Solution. A) DOGS.2 and CSS.1 aptamer [50 
nM]/quencher [55 nM] in the in the presence of the 
CS steroid [150 µM], and in the presence of the 
DC steroid [150 µM]. The fluorescence (488/520 
nm) and (647/662 nm) was normalized and error 
bars represent 95% confidence interval (95% CI) 
for five replicates.  
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Figure A-IV.4 - Raw Data for Figure 7.4. Five replicates (error bars are 95% CI) for the DOGS.2 
and CSS.1 A/Q pairs. Both steroids were added at 500 µM. The FAM channel (488/520 nm) and 
ATTO647 channel (647/662 nm) values were calculated using an ROI that was identical for all 
replicates. The GUV ROI was a circular region that comprised the majority of all GUVs, while the 
Background ROI was a circular region taken outside the GUV. 
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APPENDIX V – LATERAL DIFFUSION OF DNAZYMES USING 
CHOLESTEROL FOR INCORPORATION INTO THE LIPID 
BILAYER 
 

A-V.1 Cholesterol Incorporation was Stable and Quantifiable 
 As a continuation of Chapter 4 we 

moved away from maleimide-thiol 

linkages, as the conjugation efficiency 

was low and quantifying the number of 

strands per bead was desirable. 

Oligonucleotides modified with 

cholesterol are commercially available 

and cholesterol readily inserts into lipid 

bilayers, so we used the same µSLB 

system and left out the MPB PE. From 

here, cholesterol tagged versions of 

TSD (CSD) and TSS (CSS) could 

easily be incorporated into the µSLBs 

(Figure A-V.1A, and a linear 

regression of this data Figure A-

V.1B). These systems were stable for 

up to 24 hours (Figure A-V.2C), which 

was an improvement over the previous 

system. Additionally, the number of strands could be quantified using Bang 

Laboratory calibration beads. As such, we were able to incorporate a specific 

 
Figure A-V.1 – DNA-Cholesterol in 
µSLBs. A) ATTO647 tagged CSS 
incorporated at increasing 
concentrations (molecules/bead). B) 
Linear regression of the median 
fluorescent values from A. C) Twenty-
four hour stability test with CSD and 
CSD hybridized to U2_Enzyme_CSD 
(CSD/DNAzyme).  
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number of different strands into a µSLB and this system was stable for periods of 

time that were relevant for DNAzyme reactions. 

A-V.2 The DNAzyme did not Release the Substrate Post Cleavage 
 The preferable behavior for the DNAzyme reactions presented in Chapter 4 

would be cleavage of all substrate molecules on the µSLB. Hypothetically, once 

the first substrate was cleaved the DNAzyme and the cleaved substrate would 

dissociate, allowing the DNAzyme to diffuse away and hybridize to another 

substrate (Figure A-V.2A). However, we observed a much lower cleavage rate, 

an explanation for which is illustrated in Figure A-V.2B. Here, the DNAzyme 

remains bound to the lower portion, proximal to the µSLB, of the substrate 

molecule. This could due to a stabilizing effect that arises due to both strands being 

restricted to the µSLB. 

 
   

 
Figure A-V.2 – Preferred DNAzyme Behavior. A) Ideally, the DNAzyme will diffuse to an initial 
substrate molecule, which will be cleaved and the binding arms will dissociate. The upper binding 
arm, with the fluorophore, will move into solution and the lower binding arm will be released 
allowing the DNAzyme to diffuse to the next uncleaved substrate molecule. B) However, if 
restriction of strands to the bilayer confers stability, the lower binding arm will never dissociate 
from the DNAzyme. Thereby, preventing cleavage of additional substrate molecules. 
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A-V.3 Destabilizing the Lower Substrate Binding Arm  

 In order to achieve the preferable DNAzyme behavior, we redesign the 

DNAzyme sequence to destabilize the post-cleavage interaction (Figure A-V.3). 

The original DNAzyme contain 8 base pairs on both the upper and lower binding 

arms (Figure A-V.3A). To destabilize the interaction 3 version of the DNAzyme 

were designed, each with one less base pair on both the upper and lower binding 

arms (Figure A-V.3B). When the first set of strands were tested in solution we saw 

a decreased function (Figure A-V.4) as the number of base pairs in the binding 

arms decreased.  For the second round of DNAzyme designs we did not order a 

version with 5 base pairs on the lower binding arm, as 5 base pairs on both arms 

resulted in minimal DNAzyme function. We then tested U2_7_Enzyme_CSD and 

U2_6_Enzyme_CSD on bead, but did not observe the desired dissociation, which 

would have resulted in increased DNAzyme turnover and thus a stronger decrease 

 
Figure A-V.3 – DNAzyme Redesign to Achieve Preferred Behavior. A) The original 
U2_Enzyme_TSD contained 8 base pairs on both the upper (U) and lower (L) binding arms. B). 
To destabilize the post-cleavage interaction, we reduced the number of base pairs on each 
binding arm to 7 (U2_7_Enzyme_CSD), 6 (U2_6_Enzyme_CSD) and 5 (U2_5_Enzyme_CSD). 
C) We then held the upper binding arm constant and decreased only the lower binding are to 7 
(U2_78_Enzyme_CSD) and 6 (U2_68_Enzyme_CSD). 
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in bead fluorescence. Next, a set of DNAzymes where the number of base pairs 

on the upper binding arm were held constant, while the number of base pairs on 

the lower binding were decreased by one, was designed (Figure A-V.3C). These 

strands have not yet been tested, future work should investigate their behavior in 

solution and then on bead surfaces. Sequences for all version are presented in 

Table A-V.1. 

  

 
Figure A-V.4 – Solution Phase Reactions with Redesigned DNAzymes. Solution phase 
experiment in E6-276-1000 (50 mM HEPES, 276 mM NaCl, 1000 µM ZnAc2).  With the various 
DNAzymes at 8 nM, and the solution phase U2 substrate is at 40 nM. The normalized 
fluorescence is tracking the substrate tagged with FAM (492/518 nM). 
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Table A-V.1 – Strand Sequences 

Name  Sequence 

CSD /56-FAM/CAAACTTCACATCTACACTCAAAAA/3CholTE/ 

CSS /5Alex647N/AGAATAGAACAAGACAGAAACAAAAA/3CholTEG/ 
 

U2 Substrate /56-FAM/TCTTAGTTrAGGATAGTTCAT/36-TAMSp/ 

U2_Enzyme_CSD 5’-GAGTGTAGATGTGAAGTTTGAAAAAGAAC 
TATCTCCGAGCCGGTCGAAAACTAAGA-3’ 

U2_7_Enzyme_CSD 5’-GAGTGTAGATGTGAAGTTTGAAAAAAACTA 
TCTCCGAGCCGGTCGAAAACTAAG-3’ 

U2_6_Enzyme_CSD 5’-GAGTGTAGATGTGAAGTTTGAAAAAACTAT 
CTCCGAGCCGGTCGAAAACTAA-3’ 

U2_5_Enzyme_CSD 5’-GAGTGTAGATGTGAAGTTTGAAAAACTATCT 
CCGAGCCGGTCGAAAACTA-3’ 

U2_78_Enzyme_CSD 5’-GAGTGTAGATGTGAAGTTTGAAAAAAACTAT 
CTCCGAGCCGGTCGAAAACTAAGA-3’ 

U2_68_Enzyme_CSD 5’-GAGTGTAGATGTGAAGTTTGAAAAAACTATC 
TCCGAGCCGGTCGAAAACTAAGA-3’ 
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